
WDC-TR-89-1134

AD- A214 166

E&V GUIDEBOOK, VERSION 2.0

Bard S. Crawford
Peter G. Clark

The Analytic Sciences Corp.
55 Walker's Brook Drive
Reading, MA 01856

October 1989

Interim Report for Period Aug 88 to Sep 89

Approved for public release; distribution unlimited.

DTIC
ELECTE 1

NOVO 7198911

AVIONICS LABORATORY
WRIGHT RESEARCH DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use, or sell any patented invention that may ir.
any way be related thereto.

This report has been reviewed by the office of Public Affairs, (ASD/PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it
will be available to the general public including foreign nations.

This technical report has been reviewed and is approved for publication.

Raymond Szymanski Date
Program Manager

FOR THE COMMANDER:

CHARLES H. KRUEGER JR v Date
Director, System Avionics Division
Avionics Laboratory

If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization, please notify
WRDC/AAAF-3 WPAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless required by security
considerations, contractual obligation, or notice on a specific document.

89 1 07 082

Unclassified

SECURITY CLSSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMBNo. 004-0o88

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I/AVAILABILITY OF REPORT

Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distriubution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

TASC No. TR-5234-4 WRDC-TR-89-1134
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE .,YMBOL 7a. NAME OF MONITORING ORGANIZATION
The Analytic Sciences (If applicable) Avionics Laboratory (WRDC/AAAF)
Corporation Wright Research Development Center

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
55 Walker's Brook Drive Wright-Patterson AFB, OR 45433-6543
Reading, MA 01856

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Ada Joint Program Office F33515-85-C-1812
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 3E114 (1211 S. Fern Street) PROGRAM PROJECT ' TASK WORK UNIT
The Pentagon gEAo4 NO. NO. NO ACCESSION NO.
Washington, D.C. 20301-3080 63226 2853 01 01

11. TITLE (Include Security Classification) 63226

E & V Guidebook, Version 2.0

12. PERSONAL AUTHOR(S)
Crawford Bard S., Clark, Peter, G.

13a. TYPE OF REPORT 13b. TIME COVERED ' 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Interim Technical FROM 16 Aug88TO30Sep89 October 1989 151

16. SUPPLEMENTARY NOTATION

A companion document titled " E & V Reference Manual" is being released concurrently.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

09 02 EVALUATION
VALIDATION Ada Programming Support Environments (APSES)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The Ada community, including government, industry, and academic personnel, needs the
capability to assess APSEs (Ada Programming Support Environments) and their components and
to determine their conformance. to applicable standards (e.g., DoD-STD-1838, the CAIS
standard). The technology required to fully satisfy this need is extensive and largely
unavailable; it cannot be acquired by a single government-sponsored, professional society-
sponsored, or private effort. The purpose of the APSE Evaluation and Validation (E&V) task
is to provide a focal point for addressing the need by:

(1) Identifying and defining specific technology requirements,
(2) Developing selected elements of the required technology,
(3) Encouraging others to develop some elements, and
(4) Collecting information describing existing elements.

(See Reverse)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[]UNCLASSIFIED/UNLIMITED [3 SAME AS RPT. [3 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22h TELEPHONE4ncude Area Code)2&OFFE$VM OL
RAYMOND SZYMANSKI (5132594 wRCVAAAF1-

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Block 19 Continued

This information will be made available to DoD components, other government agencies,
industry and academia.

The purpose of the E & V Guidebook (this document) is to provide information that will
help users to assess APSEs and APSE components by :

(1) Assisting in the selection of E&V procedures, the interpretation of results,
and integration of analyses and results.

(2) Describing E&V procedures Pnd techniques developed by the E&V task, and

(3) Assisting in the location .f E&V procedures and techniques developed outside
the E&V Task.

All E&V procedures and techniques found in the Guidebook are referenced by the indexes
contained in the companion document called the E&V Reference Manual.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification

By
Distribution/

Availability Codes
Avail and/or

Dist Special

A--

E&V Guidebook, Version 2.0

I"

* EXECUTIVE SUMMARY

The Ada community, including Government, industry, and academic personnel,

needs the capability to assess APSEs (Ada Programming Support Environments) and their com-

ponents, and to determine their conformance to applicable standards (e.g., DoD-STD-1838, the

I CAIS standard). The technology required to fully satisfy this need is extensive and largely un-
available; it cannot be acquired by a single government-sponsored, professional society-

BI sponsored, or private effort. The purpose of the APSE Evaluation and Validation (E&V) Task is

to provide a focal point for addressing the need by:

5---(1) Identifying and defining specific technology requirements,'

12) Developing selected elements of this technology'.* -(3) Encouraging others to develop additional elements and

I1 (4) Collecting information describing elements which already exist.

This information will be made available to DoD components, other government agencies, indus-

try and academia.

The purpose of the E&V Guidebook (this document) is to provide information that

I will help users to assess APSEs and APSE components by:

3 ":-1) Assisting in the selection of E&V procedures, the interpretation of
results, and integration of analyses and results)

(2) Describing E&V procedures and techniques developed by the E&V
Task; and

(3) Assisting in the location of E&V procedures and techniques devel-
oped outside the E&V Task. .

All E&V procedures and techniques found in the Guidebook are referenced by the indexes con-

tained in the companion document called the E&V Reference Manual.

ES-1

E&V Guidebook, Version 2.0

Chapters 1 through 4 provide a general introduction to the document and other

background material. Chapter 5 and later chapters are "formal chapters" built around a stan-

dard format and formal grammar. Each of the formal chapters contains all the assessment pro-

cedures and techniques associated with a particular group of tools or toolsets to be assessed,
such as Compilation System Assessors or Test System Assessors. The assessment proce-

dures are described and in some instances can be applied directly from the information given in
the Guidebook. In other cases, the user is directed to a primary reference for more information.

Yearly updates and extensions to this document are planned. Therefore, com-

ments and suggestions are welcome. Please send comments electronically (preferred) to

szymansk@ajpo.sei.cmu.edu, or by regular mail to Mr. Raymond Szymanski, WRDC/AAAF,

Wright Patterson AFB, OH 45433-6543.

ES-2

g E&V Guidebook, Version 2.0

ITABLE OF CONTENTS

5 Page

EXECUTIVE SUMMARY ES-1

LIST OF FIGURES vii

I LST OF TABLES viii

1. INTRODUCTION 1-1
1.1 Purpose of Guidebook 1-1
1.2 The Need for E&V Technology 1-31.3 Background 1-41.4 Organization of the Guidebook 1-5

2. STRUCTURE AND USE OF THE GUIDEBOOK 2-1
2.1 Structure 2-1
2.2 Example Uses 2-3
2.3 Bias in Evaluation 2-4

3. INTEGRATION OF APSE ASSESSMENTS 3-1
3.1 General Background 3-1
3.2 Early Efforts at Integrated APSE Assessment 3-2
3.3 Towards a Comprehensive Approach 3-3

4. SYNOPSES 4-1
4.1 Stoneman 4-2
4.2 Houghton: A Taxonomy of Tool Features for the Ada

Programming Support Environment (APSE) 4-3
4.3 E&V Report: DoD APSE Analysis 4-4
4.4 Classification Schema/E&V Taxonomy Checklists 4-5
4.5 Requirements for E&V 4-6
4.6 Tools and Aids for E&V 4-7
4.7 STARS-SEE Operational Concept Document 4-8
4.8 Grund, et al.: Key Characteristics of APSES 4-9
4.9 Ada-Europe: Selecting an Ada Environment 4-10
4.10 McDermid and Ripken: Life Cycle Support in the Ada Environment 4-11
4.11 Notkin and Habermann: Software Development Environment

Issues as Related to Ada 4-12
4.12 Stenning, et al.: The Ada Environment: A Perspective 4-13
4.13 Weiderman: Evaluation of Ada Environments 4-14
4.14 Barstow and Shrobe: Observations on Interactive

Programming Environments 4-15
4.15 Houghton and Wallace: Characteristics and Functions

of Software Engineering Environments: An Overview 4-16
4.16 CAIS: DoD-STD-1838 4-17
4.17 CAIS-A: MIL-STD-1838A 4-18
4.18 Hogan and Prud'Homme: Definition of a Production Quality Compiler 4-19I

£ iii

I
E&V Guidebook, Version 2.0 I

TABLE OF CONTENTS (Continued) 5

4.19 Nissen, et al: Guidelines for Ada Compiler Specification PageI

and Selection 4-20
4.20 WIS Compiler Evaluation Guidelines 4-22
4.21 WIS Tool Evaluation Criteria 4-23 I
4.22 Weiderman: Compiler Evaluation and Selection 4-24

5. COMPILATION SYSTEM ASSESSORS 5-1
5.1 Ada Compiler Validation Capability (ACVC) 5-2
5.2 IDA Benchmarks 5-3
5.3 Ada Compiler Evaluation Capability (ACEC) 5-4
5.4 PIWG Benchmark Tests 5-7 I
5.5 University of Michigan Benchmark Tests 5-8
5.6 MITRE Benchmark Generator Tool (BGT) 5-9
5.7 UK Ada Evaluation System (AES) 5-10
5.8 Compilation Checklist 5-11
5.9 Program Library Management Checklist 5-13
5.10 ARTEWG Catalogue of Ada Runtime Implementation Dependencies 5-14
5.11 ARTEWG Runtime Environment Taxonomy 5-15 #5
5.12 Compiler Assessment Questionnaire 5-19
5.13 Weiderman: Compiler Evaluation Lists 5-20
5.14 Runtime Support System Questionnaire 5-22

6. TARGET CODE GENERATION AIDS AND ANALYSIS
TOOLSET ASSESSORS 6-1
6.1 Assembling Checklist 6-2
6.2 Linking/Loading Checklist 6-3
6.3 Import/Export Capabilities Checklist 6-4
6.4 Emulation Capabilities Checklist 6-5
6.5 Debugging Capabilities Checklist 6-6
6.6 Timing Analysis Capabilities Checklist 6-8
6.7 Real-Time Analysis Capabilities Checklist 6-9
6.8 Instruction-Level Simulation Checklist 6-10

7. TEST SYSTEMS ASSESSORS 7-1
7.1 Testing Capabilities Checklist 7-1 I
7.2 SEI Unit Testing And Debugging Experiment 7-3

8. TOOL SUPPORT COMPONENT ASSESSORS 8-1
8.1 CAIS Implementation Validation Capability (CIVC) 8-2
8.2 Tool Support Interface Evaluation 8-3

9. REQUIREMENTS/DESIGN SUPPORT ASSESSORS 9-1
9.1 SEI Design Support Experiment 9-1
9.2 Requirements Prototyping Capabilities Checklist 9-2

iv i

E&V Guidebook, Version 2.0

TABLE OF CONTENTS (Continued)

Page

9.3 Simulation and Modeling Capabilities Checklist 9-3
9.4 NADC/SPS CASE Tools Evaluation 9-5
9.5 Time-Critical Applications Support Checklist 9-7

10. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS 10-1
10.1 Configuration Management Capabilities Checklist 10-1
10.2 SEI Configuration Management Experiment 10-3
10.3 Configuration Management Assessment Questionnaire 10-4

11. DISTRIBUTED SYSTEMS DEVELOPMENT AND
RUNTIME SUPPORT ASSESSORS 11-1

12. DISTRIBUTED APSE ASSESSORS 12-1
12.1 Distributed APSE Questionnaire 12-2

13. "WHOLE APSE" ASSESSORS 13-1
13.1 APSE Characterization 13-1
13.2 Ada-Europe Ada Environment Questionnaires 13-4
13.3 Cross Development System Support Questionnaire 13-5
13.4 APSE Customization Questionnaire 13-6

14. ADAPTATION ASSESSORS 14-1
14.1 Host and Target Questionnaire 14-1
14.2 Machine-Specific Characteristics Questionnaire 14-2

15. INFORMATION MANAGEMENT SUPPORT ASSESSORS 15-1
15.1 File Management Checklist 15-1
15.2 Database Management Checklist 15-4
15.3 Electronic Mail Checklist 15-7

99. OTHER ASSESSORS 99-1
99.1 Text Editing Capabilities Checklist 99-1
99.2 Language-Sensitive Editing Capabilities Checklist 99-3
99.3 Performance Monitoring Checklist 99-5
99.4 Command Language Interpreter Assessment Questionnaire 99-6
99.5 RADC Software Quality Metric Worksheets 99-7
99.6 SEI Assessment of Software Engineering Tools 99-8
99.7 Vendor Evaluation Questionnaire 99-9
99.8 Required Configuration Questionnaire 99-10
99.9 Cost Questionnaire 99-11
99.10 Maturity Questionnaire 99-13
99.11 Licensing Issues Questionnaire 99-14
99.12 Software Production Vehicle(s) Questionnaire 99-15

E&V Guidebook, Version 2.0

TABLE CF CONTENTS (Continued)

Page

APPENDIX A CITATIONS A-1

APPENDIX B ACRONYMS AND ABBREVIATIONS B-1

APPENDIX C FORMAL GRAMMAR C-1
C.1 Formal References C-1
C.2 Formal Chapters C-2

C.2.1 Chapter Components C-2
C.2.2 Chapter Entries C-3
C.2.3 Formal Chapter Ordering C-3

APPENDIX D VENDORS AND AGENTS D-1

vi

I
3 E&V Guidebook, Version 2.0

I LIST OF FIGURES

V Figure Page

I 1.1-1 Relationship Between Reference Manual and Guidebook 1-2

5.12-1 Compiler Hierarchy 5-19

5.14-1 Runtime Support System Questionnaire 5-22

10.3-1 Configuration Management Hierarchy 10-4

I 12.1-1 Distributed APSE Questionnaire 12-2

13.1-1 APSE Characterization Form 13-2

I 13.3-1 Cross Development System Support Questionnaire 13-5

13.4-1 APSE Customization Questionnaire 13-7

i 99.4-1 Command Language Interpreter Hierarchy 99-6

99.8-1 Required Configuration Questionnaire 99-10

I 99.9-1 Cost Questionnaire 99-12

99.10-1 Maturity Questionnaire 99-13

i 99.11-1 Licensing Issues Questionnaire 99-15

99.12-1 Software Production Vehicle(s) Questionnaire 99-17

VI!
I

I

I
I
U vii

E&V Guidebook, Version 2.0

LIST OF TABLES

Table Page

4.10-1 Example Coherent Methodology 4-11

5.8-1 Compilation Capabilities Checklist 5-12

5.9-1 Program Library Management Capabilities Checklist 5-13

5.11-1 Runtime Environment Taxonomy 5-16

5.13-1 Compiler Evaluation Lists 5-21

6.1-1 Assembling Capabilities Checklist 6-2

6.2-1 Linking/Loading Capabilities Checklist 6-3

6.3-1 Import/Export Capabilities Checklist 6-4

6.4-1 Emulation Capabilities Checklist 6-5

6.5-1 Debugging Capabilities Checklist 6-7

6.6-1 Timing Analysis Capabilities Checklist 6-8

6.7-1 Real-time Analysis Capabilities Checklist 6-9

6.8-1 Instruction-level Simulation Checklist 6-10

7.1-1 Testing Capabilities Checklist 7-2

9.2-1 Requirements Prototyping Capabilities Checklist 9-2

9.3-1 Simulation and Modeling Capabilities Checklist 9-4

9.5-1 Time-critical Applications Support Checklist 9-7

10.1-1 Configuration Management Capabilities Checklist 10-2

13.2-1 Ada-Europe Environment Questionnaires 13-4

15.1-1 File Management Capabilities Checklist 15-2

15.2-1 Database Management Capabilities Checklist 15-5

15.3-1 Electronic Mail Capabilities Checklist 15-7

99.1-1 Text Editing Capabilities Checklist 99-2

99.2-1 Language-Sensitive Eoiting Capabilities Checklist 99-4

99.3-1 Performance Monitor Capabilities Checklist 99-5

99.7-1 Vendor Characterization Form Categories 99-9

viii

I
I E&V Guidebook, Version 2.0

i

I i . INTRODUCTION

rn 1.1 PURPOSE OF GUIDEBOOK

This document is a product of the Ada Programming Support Environment (APSE)

Evaluation and Validation (E&V) Task sponsored by the Ada Joint Program Office. It is one of a

pair of companion documents known as the E&V Reference System, consisting of:

I E&V Reference Manual

0 E&V Guidebook.

The subject of both documents is the assessment of APSEs and their components. Specific as-

sessment techniques typically fall into one of two categories: evaluation (assessment of per-
formance and quality) and validation (assessment of conformance to a standard).

i The purpose of the Guidebook is to provide a collection of information to support a

variety of E&V users in the following ways. It should help them:

* Gain an overall understanding of APSE assessment, in particular,

the selection of appropriate E&V procedures, the interpretation of
test results, and the integration of analyses and results.

* Apply the various E&V procedures and techniques developed un-fder E&V Task sponsorship.

* Find the primary sources for those E&V procedures and tech-
niques not developed by the E&V Task or not fully explained within
the Guidebook (due to space or other constraints).

3The Reference Manual includes many "pointers" to sections in the Guidebook and other docu-
ments which describe E&V techniques in much the same way that a card catalog does in a Ii-

g brary. Figure 1.1-1 illustrates mhe relationship between the documents.

!
£ 1-1

E&V Guidebook, Version 2.0

G-10454
6127/88

Users May Consult Directly Consult
the Reference or the Guidebook...
Manual to Extract:

(1) Useful or (2) Pointers to

Information -- SectionsDirectly from th Guidebook......

the Manual E&V
Reference

Manual

E&V
Guidebook

... Which Provides Information About
E&V Tools and Techniques

Figure 1.1-1 Relationship Between Reference Manual
and Guidebook

1-2

I
E&V Guidebook, Version 2.0

1.2 THE NEED FOR E&V TECHNOLOGY

Technology for the assessment of APSEs and APSE components (tools) is needed

because of the difficulty in assessing APSEs and because of the importance of the decisions

made based on these assessments. The importance of an APSE selection is evident when one

considers the large, critical, Ada-based systems to be developed in the coming years. The ef-

fectiveness, reliability, and cost of these systems will be strongly influenced by the environments

used to develop and maintain them. From the point of view of a software developing organiza-

tion, the decision to select an APSE can be an important investment decision with long-lasting in-

3fluence on a number of projects and the organization's operating procedures, training, and

competitiveness. From the point of view of a software maintenance organization, the environ-

ment used will strongly influence the organization's effectiveness, as well as the cost of its opera-

tions and training.

5 The difficulty of assessing APSEs and tools exists for several reasons. First, an

APSE represents very complex technology with many elements, which can be assessed indi-

vidually or in combination. Second there is a confusing diversity of choice with respect to individ-

ual tooi,; tool sets, or "whole APSEs"; and there are a number of ways of viewing APSEs; see

Chapter 3 of the E&V Reference Manual [@RM 3]. * Third, the state of the art of APSE architec-

ture and of some categories of tools (e.g., graphic design tools) is undergoing rapid change. Fi-

nally, there is a lack of historical data relevant to APSEs, partly because of the general pace of

5technological change and partly because we are dealing with Ada, a relatively new implementa-

tion language. E&V technology provides methods and techniques to overcome these difficulties

5 and provides a basis for determining performance and other attributes of APSEs.

In addition to the need for assessment technology itself, there is a need for informa-

tion about this technology. Potential buyers and users of APSEs and tools need a framework for

understanding APSEs and their assessment, as well as information about specific assessment

3 techniques. Similarly, vendors of tools and APSEs need to be aware of the deficiencies of cur-

rent products, as well as the criteria to be used in the assessment of future products. Such

awareness on both sides, expressed in a common terminology, should speed up the evolution of

better software development environments.

'The format used for references is associated with the "formal grammar" used beginning3 with Chapter 5. See further explanations in Appendix C.

1-3

E&V Guidebook, Version 2.0

1.3 BACKGROUND

In June 1983 the Ada Joint Program Office (AJPO) proposed the formation of the
E&V Task and a tri-service E&V Team, with the Air Force designated as lead service. In Octo-

ber 1983 the Air Force officially accepted responsibility as lead service and designated the Air
Force Wright Aeronautical Laboratories (AFWAL) at Wright Patterson Air Force Base as lead

organization. In April 1984 an E&V Workshop was held at Airlie, Virginia. The purpose of the
workshop was to solicit participation of industry representatives in the E&V Task. Many of the

participants in the workshop have chosen to remain involved as Distinguished Reviewers, and

additional industry participants have subsequently become involved in E&V Team activities.

The E&V Task publishes an annual public report. The following paragraph is

quoted from the 1987 version [@E&V Report 1987] of the report:

"The Ada community, including government, industry, and academic personnel,
needs the capability to assess APSEs (Ada Programming Support Environments)
and components and to determine their conformance to applicable standards (e.g.,
DoD-STD-1838, the CAIS standard). The technology required to fully satisfy this
need is extensive and largely unavailable; it cannot be acquired by a single govern-
ment-sponsored, professional society-sponsored, or private effort. The purpose of
the APSE Evaluation and Validation (E&V) Task is to provide a focal point for ad-
dressing the need by (1) identifying and defining specific technology requirements,
(2) developing selected elements of the required technology, (3) encouraging oth-
ers to develop some elements, and (4) collecting information describing existing
elements. This information will be made available to DoD components, other gov-
ernment agencies, industry, and academia."

The team public reports contain much additional information for the interested reader. See for

example, the "DoD APSE Analysis Report" [@E&V Report 1984], the "Requirements for the
Evaluation and Validation of Ada Programming Support Environments, Version 2.0" [@E&V Re-
port 1987], and the "Tools and Aids Document, Version 1.0" [@E&V Report 1987], which are
synopsized in Chapter 4 (4.3, 4.5, 4.6].

1-4

E&V Guidebook, Version 2.0

Three competitive contracts have been awarded under the E&V Task. These are:

Technical Support contract - awarded June 1985

* Ada Compiler Evaluation Capability (ACEC) contract - awarded
February 1987

* CAIS Implementation Validation Capability (CIVC) contract -
awarded May 1987.

The major purpose of the first of these contracts is to create and update elements of the E&V

Reference System, including this document. The purpose of the second and third contracts is

to create two additional elements (ACEC and CIVC) of the needed E&V technology.

1.4 ORGANIZATION OF THE GUIDEBOOK

Chapter 2 provides a general description of the structure and use of the Guidebook.

Chapter 3 provides high-level guidance to users who may need assistance in se-

lecting instances of the technology and integrating the results -of its application.

Chapter 4 provides synopses of other documents or activities that are either too

broad in scope to fit within one of the later chapters or are of historical importance to E&V activi-

ties.

Chapter 5 and subsequent chapters are "formal chapters" that describe or refer to

specific instances of E&V technology. Each of the formal chapters contains all of the proce-

dures and techniques associated with a particular group of tools or toolsets to be assessed,

such as Compilation System Assessors or Test System Assessors. A standard format based on

a "formal grammar" is used in presenting this material. See further explanations in Appendix C.

Appendices A, B, and C contain a list of citations, a list of acronyms and abbrevia-

tions, and a definition of the formal grammar used in the formal chapters, respectively. Appendix

D contains the list of vendors and agents of assessment tools who are the primary sources of

E&V technology.

1-5

E&V Guidebook, Version 2.0

I 2. STRUCTURE AND USE OF THE GUIDEBOOK

This chapter provides a brief explanation of the structure and uses of the E&V
Guidebook. It is expected that many users have first consulted the E&V Reference Manual (seeUi Fig. 1.1-1) and come to the Guidebook with a specific chapter and section number in hand, pre-

pared to read about a specific instance of E&V technology. A user following this path does not
particularly care about the overall structure of the document. Other users, however, may come

to the document with a less narrowly-defined objective. An attempt has been made, with such
users in mind, to make the Guidebook easy to use as a stand-alone document.

2.1 STRUCTURE

The Guidebook structure may be considered as having four major subdivisions, as

follows:

* Introductory Material (Chapters 1 and 2)

* General Background Material (Chapters 3 and 4)

* Specific E&V Technology Descriptions (Chapters 5 and beyond)

* Appendices.

The introductory material is used to introduce the document and its structure. The general back-
ground material is used to introduce the general subject of APSE assessment. Chapter 3 is an
"essay" designed to help users who are faced with the question of how to evaluate an APSE as a
whole, or how to compare several APSEs with the objective of selecting one. (Chapter 3 of the
E&V Reference Manual, dealing with whole APSE assessment issues, is a "companion essay"
that provides complementary background material.) Chapter 4 provides a different kind of back-
ground material. It may be considered a "guide to the literature" of APSE assessment. It con-
tains synopses of documents that fall into one of two categories. One category is that of
documents that contain no specific instances of E&V technology, but contain generally useful
background material. The other category is that of documents that contain or discuss multiple

2-1

E&V Guidebook, Versicn 2.0

instances of E&V technology, which are individually covered in multiple parts of the later, formal

chapters. These multiple instances can be thought of as children of a common parent. In order

to avoid the redundancy of summarizing the parent document many times, the Chapter 4 synop-
sis is provided as a common point to which all the children may refer. Each "synopsis text

frame" in Chapter 4 has the following parts:

* Citation: (the primary reference)

" Synopsis: (brief description)

" Methods: (references to specific instances of E&V technology, if
any).

The formal chapters (Chapters 5 and beyond), which comprise the main bulk of the

Guidebook, describe or summarize specific instances of E&V technology. The chapter subjects

and titles were chosen to be meaningful and intuitive to users of the Guidebook. Thus, they fo-

cus on the subject of assessment (e.g., Compilation System, Test System, Ada Design Support

System, etc) rather than the method of assessment (e.g., formal validation, subjective evalu-
ation, etc). Within each chapter there are, in general, multiple instances of assessment technol-

ogy. Some may be examples of evaluation techniques, others may be examples of validations,
others may be mixtures of the two. Readers should not infer approval of the E&V Task, be-

cause a tool or technique is included in the collection, or disapproval, because a tool or tech-
nique is not included. Readers who know of instances of E&V technology not reported here are

urged to contact the E&V Task chairman, in the manner described in the Executive Summary.
The separate instances within a chapter are simply placed there in chronological order, indicat-

ing the relative timing of the material's first appearance in the Guidebook. Readers should not

infer any judgment as to relative importance based on order. Each chapter thus provides a dy-
namically growing section of the Guidebook. Old sections will not be thrown away or replaced by

new sections describing newer techniques. Old sections may, however, be updated if a particu-

lar vendor or agent has updated material describing a technique, or has improved the technique
itself without fundamentally changing the approach. Each "technique text frame" in the formal

chapters has the following parts:

" Purpose:

* Primary References:

2-2

I
3 E&V Guidebook, Version 2.0

1 . Host/OS: (if applicable)

3 . Vendors/Agents: (if applicable)

. Method:

Inputs:

Process:

*Outputs:

The final major subdivision (the appendices) require little explanation here. The for-
mal grammar described in Appendix C need not concern most users. It was employed because

of the possibility of a future on-line, electronic version of the Reference System, supported by ad-

vanced updating and information retrieval techniques.

2.2 EXAMPLE USES

U Instances of E&V technology may be found in two ways. A user may consult the

Guidebook directly, or may first consult the E&V Reference Manual, as pictured in Figure 1.1-1.
A user who comes directly to the Guidebook would typically first look at the Table of Contents.
For example, a user interested in evaluating compiler performance would naturally look under

IChapter 5 "Compilation System Assessors." The titles of Sections 5.2, "IDA Benchmarks," and
5.3, "Ada Compiler Evaluation Capability (ACEC)," would probably suggest themselves as rele-

3 vant to this user's needs - as indeed they are.

Alternatively, the user may consult the E&V Reference Manual, which is designed to
help find E&V techniques in the same way that the card catalog helps people find books in the li-

brary. For example, the Reference Manual contains both a Function Index and an Attribute In-
3 dex, each of which contains cross references to elements in the other. One element of the

Function Index is the function "Compilation," which is cross-referenced to a number of relevant
I attributes. Under the particular function-attribute pair "Compilation-Processing Effectiveness"

are listed a number of Guidebook references. Among these are the same two Sections, 5.2 and

5.3, of the Guidebook, mentioned in the previous paragraph. The user following this procedure

could pick up the Guidebook and go directly to these two sections or "text frames" and find sum-

I
3 2-3

I
E&V Guidebook, Version 2.0

mary information concerning the IDA Benchmarks test suite and the ACEC test suite, respec- I
tively. I
2.3 BIAS IN EVALUATION 5

Some elements of bias are inherent in all evaluation techniques. Examples of such
elements are given in the following paragraph. It is important that users of evaluation techniques 3
be aware of these built-in biases and use caution in the interpretation of results. A tool or APSE
that is "different" may receive an unfair evaluation because of an unintended bias against new
technology or a new concept of operations. The effects of bias can be minimized, but not elimi-
nated, by careful design of experiments. In some situations certain elements of bias are actually 3
desirable, as discussed in the final paragraph of this section.

Consider, for example, a whole-APSE evaluation based on a series of structured i
experiments involving various portions of the life cycle. The items to be evaluated are competing
commercial software products - collections of tools integrated in some way. The experiments 3
are built around a model project, partially completed, and instructions to perform specific life-
cycle activities such as test and integration, configuration management, response to a change in 5
system requirements, or documentation updates. The outcome of such experiments are inevit-
ably influenced by factors that are not characteristics of the software products under evaluation.

These factors include: the skill and experience of the evaluation team members, the manage- U
ment ability of the team leaders, the software development methods ordinarily favored by the
team members (as opposed to those best supported by the APSEs under evaluation), the appli- I
cation domain of the model project (as opposed to those in which team members are experi-
enced), and other surrounding environmental factors. i

The influence of the factors listed above can be controlled to some extent. For ex-

ample, it is possible to employ a sequence in which: in Phase 1 Team 1 does Model Project M
on APSE A while Team 2 does Model Project N on APSE B; in Phase 2 the teams exchange
roles; in Phase 3 they compare notes and write a joint evaluation report. This sort of approach I
can be useful in removing bias, but is of course very expensive.

I

2-4

E&V Guidebook, Version 2.0

Before embarking on an APSE evaluation it is important to have a clear understand-
ing of the purpose of the evaluation. It is unlikely, for example, that the purpose of an APSE eval-

uation project will be to select "the best APSE" in some general, global sense. It is more likely

that the purpose will be to select the best APSE for a particular project or sequence of projects,

to be used by a particular organization (with its unique history and preferences), in a particular
application domain. It is also possible that there is only one APSE available or that an APSE has

already been chosen. In this case the purpose of the evaluation includes obtaining a better un-

derstanding of the characteristics of the APSE and the risks and costs associated with its use in a

particular application domain and with a particular development methodology. In such cases it is

quite legitimate for the evaluation to reflect organizational and individual "biases." It is, after all,
a particular group of individuals who will be asked to use the APSE in a productive way. If they
have a choice, they will want to choose an APSE that supports their style. If the choice is already

made, they will need to understand how the given APSE supports, or fails to support, their pre-

ferred methods of operation. Thus, a "biased evaluation" can be a desirable and necessary ob-

jective.

2-5

E&V Guidebook, Version 2.0

I

I 3. INTEGRATION OF APSE ASSESSMENTS

I
The purpose of this chapter is to provide high-level guidance for the user of the E&V

I Reference System (Reference Manual and Guidebook) who is interested in evaluating an APSE
as a whole, or in comparing several APSEs with the objective of selecting one. While the "formal

I chapters" (beginning with Chapter 4 of the Reference Manual and Chapter 4 of the Guidebook)
provide assistance in locating, defining, and assessing many individual aspects of APSEs, they
do not provide an overall approach to weighting and combining the results of such assessments.
Section 3.1 briefly discusses some relevant general background material. Section 3.2 dis-
cusses some earlier, partial efforts aimed at an integrated approach. Section 3.3 provides some

I additional guidance leading to a comprehensive, integrated approach.

3 It is necessary, first, to distinguish the subject of this chapter -- integrated whole-
APSE assessment - from the subject of Chapter 13 - specific "Whole-APSE Assessors." The
integrated form of whole-APSE assessment (Section 3.3) involves a combining or mixing to-

gether of the results of individual assessment steps to arrive at a decision. These individual
steps may be oriented toward specific functions or tools, or may be oriented toward a "whole

I APSE," in relation to specific attributes or the APSE's performance in a specific life-cycle phase
or activity. Thus, a whole APSE assessor (Chapter 13) might be used to evaluate the APSE's

I capability to support a project team during one major activity, such as preliminary design. The
results of such an assessment would become one of the weighted factors of an integrating proc-

* ess leading to a major decision.

I 3.1 GENERAL BACKGROUND

3 Chapter 4 of this Guidebook contains synopses of books, articles, and documents.
Some of these have historical value and are also indirectly relevant to the topic of an integrated
approach to APSE evaluation because they provide definitions of an APSE or highlight issues
that may be important during APSE evaluations. The Stoneman document [@DoD 1980] defines
an APSE as a layered system and includes some discussion of evaluation criteria. The Common

3-1

E&V Guidebook, Version 2.0

APSE Interface Set (CAIS) definition documents [@DoD 1986, @MIL 1989] describe proposed
interface requirements for interfaces that exist between layers of an APSE. The motivation for

these interface requirements is to support the transportability of tools and project databases from
one APSE to another. The book "Life Cycle Support in the Ada Environment" by McDermid and

Ripken [@McDermid 1984] takes a top-down approach to defining a "coherent APSE," starting
with requirements for a coherent life-cycle methodology; see synopsis [4.10]. Several papers in

an IEEE Tutorial [@Wasserman 1981] provide relevant observations on desirable characteristics
and major issues for Ada support environments; see synopses [4.11, 4.12, 4.13]. A more recent

survey paper "Characteristics and Functions of Software Engineering Environments: An Over-
view" [@Houghton and Wallace 1987] provides a broad discussion of environments and the
state of the art; see synopsis [4.15]. Chapter 3 of the E&V Reference Manual [@RM: Whole
APSE Assessment Issues 3.] presents various ways of viewing an APSE and key whole-APSE at-

tributes.

3.2 EARLY EFFORTS AT INTEGRATED APSE ASSESSMENT

The following quotation is from a paper by Henderson and Notkin [@Henderson
1987]:

"Perhaps the biggest failing of environments research and development to
date is the general lack of scientific evaluation of existing environments.
Evaluation approaches and actual evaluations are beginning to appear, but
relatively little effort has been given to this undeniably fundamental subject."

Some early efforts are mentioned briefly below.

The Software Engineering Institute (SEI) has developed a methodology [@Weider-
man 1987] to evaluate certain aspects of APSEs. The methodology centers around the execu-
tion of several experiments in the environment(s) to be evaluated. The experiments are
designed in a generic fashion and must be tailored or "instantiated" for each specific environ-
ment; see synopsis [4.13]. The early applications, by the SEI, of this methodology were aimed

at limited objectives (see [7.2, 9.1, 10.2]), and are not examples of integrated whole-APSE
assessments. However, the SEI methodology has been applied by TRW to a broad-gauged,
whole-APSE selection process; see [@Gray 1987]. It is apparent that industry has devoted re-

3-2

I
I E&V Guidebook, Version 2.0

I sources internally to comparative assessment of commercial APSEs. However, other than
Gray's paper, little has yet been published in the open literature describing the techniques
employed.

I The book "Selecting an Ada Environment" [@Lyons 1986], written by the Ada
Europe Environment Working Group, provides background discussion about a broad range of
topics. In each chapter and section it provides a list of questions to be asked about the environ-

ment under consideration; see synopsis [4.9]. Some of the chapters and questions listed have a
definite "integrated whole-APSE assessment" flavor. The whole-APSE checklist [13.3] has
been adapted from material of this book.

I
3.3 TOWARDS A COMPREHENSIVE APPROACH

I The published literature on assessment of software engineering environments does
not include descriptions of "decision support" oriented approaches. (But, see the forthcoming

I dissertation [@Lawlis 19891.) A decision support system is one that leads a user through a
structured framework that includes weighting factors and decision criteria, and supports a final

I decision process. As applied to APSE assessment this kind of approach would support a final
decision, such as, whether a single APSE under consideration is "good enough," or which of

3several APSEs under consideration is "best."

The following characteristics appear to be appropriate for a decision support sys-
3 tem designed for integrated APSE assessment:

I The system should allow the specification of a list of "essential
features" that are absolutely required for the contemplated applica-
tion or family of applications. Ideally, each of these essential fea-
tures would be subject to a question or test that yields an
unambiguous "yes/no" result - yes, the required feature is pres-
ent, or no, it is missing.

The system should allow the specification of a second list of attrib-utes and function-attribute pairs that represent desirable features orcriteria, which should be involved in an integrated assessment.

5 The system should allow for specification of "weights" to be ap-
plied to each attribute and function-attribute pair in the second list.

I
13-3

E&V Guidebook, Version 2.0

The weights will typically be chosen subjectively by the assess-
ment participants.

* The system should include a nchanism to document/identify the
method of assessment used for every test/metric to be employed
in addressing every essentiai and desirable feature.

* The system should include a well-defined method of combination,
leading to an overall set of pre-decision results. For example, the
results may be summarized in two lines as in:

1) satisfies all essential requirements (listed in Table A)

2) scores 72 out of possible 100 (based on weights in Table B).

The characteristics outlined above represent a general framework that can be applied very dif-

ferently by different users. At one extreme is a decision maker with little time or resources, who

focuses on a short list of essential features only, and accepts answers supplied by vendors or

vendor documentation. At the other extreme is a team of APSE assessors who conduct a com-

prehensive, detailed set of tests and "model project" experiments and expend multiple person-

years of effort in a comparative, hands-on assessment of competing APSEs.

It is also possible that two assessment teams applying equal resources might differ

greatly in the manner of their assessments. One might view the APSE as a support system for a

particular life-cycle methodology adopted by its organization. Another might view the APSE as a

project database management system. These two teams would be likely to use very different

tests, or very different weights where the same tests are used. Neither is necessarily right or

wrong. In the final analysis, it is the software developer's responsibility to understand his own ap-

plication area and the most critical attributes of his development support environment.

3-4

E&V Guidebook, Version 2.0

I

I 4. SYNOPSES

I
The purpose of this chapter is to provide a single place in the Guidebook for synop-

ses of documents (or other resources), which have too broad a scope to fit within one of the sub-

sequent Chapters. In some cases the subject document appears only in this Chapter because it5 does not contain specific instances of E&V technology. For example, the Stoneman document

[@DoD 1980] does not deal with evaluation or validation of APSEs, but it has general historical
importance to the entire field of Ada environments and has been selected as the first document

to be synopsized. In other cases a particular document may contain multiple instances of E&V

technology, which are themselves summarized or referenced in multiple parts of the Guidebook.

These multiple instances can be thought of as children of a common parent. In order to avoid
the redundancy of summarizing the parent document many times, the Chapter 4 synopsis is pro-3 vided as a common point to which all the children may refer. The formal grammar used to struc-

ture the entries in subsequent chapters includes, therefore, a mechanism for referring back to
5 the synopsis contained in Chapter 4. Similarly, after each synopsis there is a provision for for-

ward references to specific techniques (if any) described in later chapters.

3Most of the documents synopsized in this chapter are readily available through pub-
lic sources. A few of them may be difficult or impossible to obtain for some readers; these were

3 included because the synopsis itself was judged to be helpful in filling in a piece of the historical

background.

4
I
I
I
I
* 4-1

E&V Guidebook, Version 2.0

4.1 STONEMAN

Citations:
[DoD 1980] J.N. Buxton, "Requirements for Ada Programming Support Environ-
ments - STONEMAN," U.S. Department of Defense, February 1980, DTIC Number
AD A100 404.

Synopsis:
The Stoneman document defines the APSE as a layered system. The innermost

layer is referred to as the Kernel APSE, or KAPSE. The KAPSE is machine-dependent
and includes the database functions and other general operating system support func-
tions. The next layer, the Minimal APSE, or MAPSE, consists of the minimal set of tools
which can support the development of software. The outermost layer, the APSE, con-
sists of tools and functions that are project dependent. In addition to providing guidance
for APSE designers, the Stoneman document provides some evaluation criteria for
APSEs.

4-2

I
5E&V Guidebook, Version 2.0

I 4.2 HOUGHTON: A TAXONOMY OF TOOL FEATURES FOR THE Ada
PROGRAMMING SUPPORT ENVIRONMENT (APSE)

Citations:
[Houghton 1983] R.C., Houghton, Jr., "A Taxonomy of Tool Features for the Ada
Programming Support Environment (APSE)," National Bureau of Standards,
NBSIR-81-2625, February 1983.

5 Synopsis:
This paper puts forth a taxonomic classification of APSE features. The features

included satisfy the criteria that they are "within current technology" and are "oriented
to the Ada language." The top two levels of the classification are as follows:

Input

Subject

Control Input

Function

* Transformation

Management

Static Analysis

Dynamic Analysis

3Output
User Output

* Machine Output

For each of the second-level elements above, a third-level list is given, and some
discussion is provided. The paper includes the results of a survey in which the second
and third-level elements under "Function" are each rated as "Required," "Important,"
or "Useful."

I
I
I
I
I 4-3

E&V Guidebook, Version 2.0

4.3 E&V REPORT: DoD APSE ANALYSIS

Citations:
[E&V Report 1984] "DoD APSE Analysis Report, Draft Version 1.0," 31 August 1984,
Appendix C of "Evaluation and Validation (E&V) Team Public Report", Air Force Wright
Aeronautical Laboratories, November 1984, DTIC Number AD A153 609.

Synopsis:
The DoD Ada Programming Support Environment (APSE) Analysis Document was

prepared by the APSE Working Group (APSEWG) of the E&V Team. It contains a de-
scription and analysis of the Ada programming support environments developed by
each of the armed services. The three environments analyzed were the Air Force's Ada
Integrated Environment (AlE), the Army's Ada Language System (ALS), and the Navy's
Ada Language System/Navy (ALS/N). The design documentation was used to deter-
mine the functionality contained in each programming environment. The functions were
described in a taxonomy in order to determine the commonality and differences of each
system. The taxonomy developed for this purpose was an expanded version of the
function part of the taxoncmy developed earlier by Houghton [@Houghton 1983]; see
synopsis (4.2].

4-4

I
E&V Guidebook, Version 2.0

E 4.4 CLASSIFICATION SCHEMA/E&V TAXONOMY CHECKLISTS

I Citations:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2,
Version 1.0, 15 June 1987.

Synopsis:
The purpose of this document was to set forth a schema, or a framework, to be

used in subsequent E&V documents, especially the E&V Reference Manual [@RM].
The Function Index of the schema was strongly influenced by earlier documents, such
as Houghton's taxonomy [4.2], the DoD APSE Analysis Report [4.3], and the SEE tool
features taxonomy [@Kean 1985]. The upper levels of the Function Index of the
schema became the initial version of the Function Index of the Reference Manual. The
lower levels were found to incorporate a large number of tool functions which could be
evaluative in nature. These tool function features have been carried over into the Guide-
book as capability assessment checklists. As a group, they are considered the Classifi-
cation Schema Checklists.

Methods:
[Compilation Checklist 5.8;

Program Library Management Checklist 5.9;
Linking/Loading Checklist 6.2;
Import/Export Capabilities Checklist 6.3;
Debugging Capabilities Checklist 6.5;
Real-Time Analysis Capabilities Checklist 6.7;
Configuration Management Capabilities Checklist 10.1;
Electronic Mail Capabilities Checklist 15.3;
Text Editing Capabilities Checklist 99.1]

II
I
I
I
I
U 4-5

E&V Guidebook, Version 2.0

4.5 REQUIREMENTS FOR E&V

Citations:
[E&V Report 1987] "Requirements for Evaluation and Validation of Ada Program-
ming Support Environments, Version 2.0," 4 December 1986, Appendix D of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright
Aeronautical Laboratories, September 1987, DTIC Number AD A196 164.

[E&V Report 1984] "Requirements for Evaluation and Validation of Ada Program-
ming Support Environments, Version 1.0," 17 October 1984, Appendix B of
"Evaluation and Validation (E&V) Team Public Report," Air Force Wright
Aeronautical Laboratories, November 1984, DTIC Number AD A153 609.

Synopsis:
This document was prepared by the Requirements Working Group (REQWG) of the

E&V Team. Its purpose is to set forth requirements on the E&V Task. It is intended for
use by the E&V Team and by the E&V Task contractors in developing technology for the
evaluation and validation of APSEs. However, its use in other E&V efforts is encour-
aged. The document contains three categories of requirements: (1) those on the E&V
Team itself, (2) those on the E&V methods and procedures, and (3) those specifying
what is to be evaluated or validated. See also the Tools and Aids Document, synopsis
[4.6].

Version 1.0 of the document contains three questionnaires for assessing: command
language interpreters, compilers, and configuration management tools.

Methods:
(Compiler Assessment Questionnaire 5.12;
Configuration Management Assessment Questionnaire 10.3;
Command Language Interpreter Assessment Questionnaire 99.4]

4-6

E&V Guidebook, Version 2.0

I 4.6 TOOLS AND AIDS FOR E&V

3 Citations:
[E&V Report 19871 "Tools and Aids Document, Version 1.0," September 1987,
Appendix C of "Evaluation and Validation (E&V) Team Public Report," Air Force
Wright Aeronautical Laboratories, September 1987, DTIC Number AD A196 164.

Synopsis:
This document was prepared by the Requirements Working Group (REQWG) of the

E&V Team. It identifies the community's E&V technology needs, provides definitions of
those needs, and prioritizes them. The purpose of this document is to provide pertinent
information to those agencies willing and able to fund the development of E&V technol-
ogy. It reflects the E&V Requirements Document (see synopsis (4.5]) and views on the
subject obtained from surveys conducted among the E&V Team and appropriate AR-

e PANET-MILNet Interest Groups.

4
U
!
I
I
I
I
I
I
I
U 4-7

E&V Guidebook, Version 2.0

4.7 STARS-SEE OPERATIONAL CONCEPT DOCUMENT

Citations:
[STARS-SEE 1985] "Proposed Version 001.0," STARS Joint Service Team for
Software Engineering Environments, Stars Joint Program Office, October 1985.

Synopsis:
The Software Technology for Adaptable, Reliable Systems - Software Engineering

Environment (STARS-SEE) Operational Concept Document (OCD) presents require-
ments from the perspective of the STARS-SEE users. It represents a consensus among
the Government agencies responsible for SEE development and support, STARS-SEE
implementors, and potential users. Major sections of the document describe the
STARS-SEE mission, operational and support environments, and system components
and functions. The primary mission centers on the development, support, reuse, man-
agement, and control of mission critical software. The STARS-SEE system is defined to
consist of the people, computers, software, and procedures needed to perform the mis-
sion. Major topics discussed include (1) the types of users and associated software ac-
tivities, (2) the function of the Integration and Compatibility Framework, (3) the
capabilities required by the Information Storage and Retrieval System, (4) the functional
capabilities of the SEE, (5) the SEE-user interaction, and (6) the hardware and software
characteristics of the computer system. The functional capabilities address project
planning and control, requirements specification and analysis, design specification and
analysis, software prototyping and modeling, reusability, program generation and unit
testing, integration testing, quality assurance, verification and validation, configuration
management, software/hardware integration, post deployment software support, pro-
ject communications, generation of documents, data collection, performance and pro-
ductivity measurement, help and training for STARS-SEE users, the transition to and
tailoring of the STARS-SEE, and knowledge engineering.

4-8

B
E&V Guidebook, Version 2.0

U 4.8 GRUND, ET AL.: KEY CHARACTERISTICS OF APSES

I Citations:
[Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics
of Ada Programming Support Environments," MITRE Corporation, ESD -
TR-85-144, MTR-9590, July 1985, DTIC Number AD B096 137.

Synopsis:
This document is intended to provide basic information about Ada Programming

Support Environments for people concerned with the specification or selection of an
APSE. Section 1 summarizes the STONEMAN APSE requirements. Section 2 de-
scribes desirable characteristics of APSEs in five areas: compilers, run-time environ-
ments, databases, configuration management tools, and editors. A short list of
questions to ask in each area is included. Section 3 describes four Ada programming
support products available or under development in early 1985 in terms of their capabili-
ties in the same five areas.

II
I
I
U
I
I
I
I
I
I 4-9

E&V Guidebook, Version 2.0

4.9 Ada-EUROPE: SELECTING AN Ada ENVIRONMENT

Citations:
[Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D.
Nissen, Ada-Europe Working Group, Cambridge University Press, 1986.

Synopsis:
The Ada-Europe Environment Working Group, under the chairmanship of John

Nissen, produced a guide which adopts the "point of view of a potential user wishing to
select an environment, and provides lists of questions to be asked about the environ-
ment under consideration." It generally follows the structure proposed in Stoneman
[@DoD 1980]; it "starts from the inside of the onion structure and works outwards."
Each of its 19 chapters follows a standard format. Topics are introduced and dis-
cussed, typically using one or two pages of text, and then a list of appropriate questions
is provided.

The structure is represented by the table of contents of the guide, reproduced in
part below.

Part A Host and Target Considerations
2. Underlying machine
3. Target machine

Part B Kernel
4. Database, schema and typing
5. Versions, configurations and history
6. Security and integrity
7. Language issues and run-time support
8. Interaction between programs

Part C Aids for Tool Building
9. Meta-tools and tool components

Part D Man-Machine Interaction
10. Administrative aspects
11. The user interface
12. Help, error and warning messages

Part E Tool Functions
13. Office automation aspects
14. Static analysis, compilation and the program library
15. Testing, debugging and dynamic analysis
16. Project and product management
17. Life cycle support

Part F Other Issues
18. Performance of the environment
19. Contractual matters

Methods:
(Ada-Europe Ada Environment Questionnaires 13.2]

4-10

I
E&V Guidebook, Version 2.0

U 4.10 MCDERMID AND RIPKEN: LIFE CYCLE SUPPORT IN THE Ada ENVIRONMENT

3 Citations:
[McDermid 1984] J. McDermid and K. Ripken, "Life Cycle Support
in the Ada Environment," Cambridge University Press, 1984.

Synopsis:
This book contrasts its own approach to APSE development with that of the

Stoneman report [@DoD 1980]. Stoneman takes a bottom-up approach, starting with a
kernel and minimal APSE (KAPSE and MAPSE), as a foundation for extensions to more
powerful and better integrated environments. McDermid and Ripken follow a top-down3 approach by defining requirements for a coherent life-cycle methodology. They then
describe a particular instance of a coherent methodology, as a combination of existing
methods used in various life-cycle phases. This description becomes the basis for a

* definition of a "coherent APSE" that supports the entire life cycle.

The authors use a seven-phase life cycle and state requirements for each phase in
terms of (1) a system representation form, (2) a transformation method and (3) a veri-fication activity. Table 4.10-1 lists the names of the seven phases (each named for its
principal output) and the methods selected for each.

I Table 4.10-1 Example Coherent Methodology

3 PHASE (OUTPUT) SELECTED METHOD

Requirements Expression CORE

3 System Specification A-7 Techniques

Abstract Functional Specification A-7 Techniques

* Module Specification Ada and ANNA

* Module Design Ada and ANNA

Module Code Ada and ANNA

5 Executable System

The authors are not completely satisfied with all of the methods chosen, and
point out shortcomings in each case. They suggest the book be used as "a reference
point for further work on APSE design and development." They stress that the coher-
ence of the methods and ease of transition from one phase to the next is an important at-
tribute. They also outline a phased development plan in which a larger scale APSE
might be developed in the following three steps: (1) a "Clerical Support APSE," (2) a
"V&V and Management Support APSE," and (3) a "Transformation Support APSE."

3 4-11

I
E&V Guidebook, Version 2.0 I

4.11 NOTKIN AND HABERMANN: SOFTWARE DEVELOPMENT ENVIRONMENT
ISSUES AS RELATED TO Ada

Citations: 3
[Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development
Environment Issues as Related to Ada," in "Tutorial: Software Development
Environments," ed. A.I. Wasserman, IEEE, 1981, pp. 107-133.

Synopsis:
This paper addresses software development problems that arise in three areas:

programming, system composition, and management. In each area traditional methods
and tools are contrasted with a more integrated approach exemplified by an experimen-
tal environment named Gandalf.

"Programming issues are those that arise when a single programmer takes a
program all the way from its specifications to a working program."

"S,.stem composition issues are those that arise when a system (or a version of a
,A,, tem) is built by integrating many programs into one." "The two basic problems in
system composition are interface control and version control." Traditional methods use
isolated tools "coordinated by memory.. .or scraps of paper."

"Management issues are those that arise when a group of more than one person
develops and maintains a system over a period of time." Three problem categories are
addressed: misunderstanding, lack of information, and conflict of interest. Tradition-
ally, these problems have been handled by non-technical means. The problem with the I
management approach to a management environment is that the solution to human in-
teraction difficulties is treated by the introduction of more human interaction. i

Methods:
Although this paper was not written as an example of E&V technology, the following

list of environment software requirements (paraphrased from the paper) may be used I
as a high-level checklist:

* Concurrent multiple users must be supported 3
* An efficient implementation of Ada must be possible

& Efficient support for data base manipulations is needed

* A good file system is essential

* An extensible command language is needed.

It is also pointed out that the most important hardware requirement is that the
software requirements listed above must be supported.

I
4-12n

E&V Guidebook, Version 2.0

4.12 STENNING, ET AL.: THE Ada ENVIRONMENT: A PERSPECTIVE

Citations:
[Stenning 1981] V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada
Environment: a Perspective," in "Tutorial: Software Development Environments,"
ed. A.I. Wasserman, IEEE, 1981, pp. 36-46.

Synopsis:
This paper discusses the objectives and the design of the Ada Programming

Support Environment. It is strongly influenced by the United Kingdom M;nistry of De-
fense Ada Support System Study, which was initiated by the MoD in January 1979. Ac-
cording to the paper, the DoD KAPSE/MAPSE/APSE approach is strongly
recommended to achieve portability. The APSE should be designed to support a pro-
ject throughout its life cycle. Furthermore, it should be an open-ended environment.
This would allow for the user to extend or modify existing tools. A basic configuration
control manager, a complete user interface, and a complete basic tool set are neces-
sary to develop an Ada Environment which will improve program reliability, life-cycle
program costs, and promote portability.

4-13

E&V Guidebook, Version 2.0

4.13 WEIDERMAN: EVALUATION OF Ada ENVIRONMENTS

Citations:
[Weiderman 19871 N. Weiderman and N. Haberman, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987,
DTIC Number AD A180 905.

Synopsis:
In response to the lack of available research about the selection of APSEs, the

Software Engineering Institute (SEI) has developed a methodology to evaluate these en-
vironments. The methodology centers around the execution of several experiments in
the environment to be evaluated. Several experiments have been developed in the fol-
lowing areas: System Management; Configuration Management/Version Control; De-
sign and Code Development; Unit Testing and Debugging. The environments are
evaluated in terms of functionality, performance, user interfaces, and system interfaces.
The need for an evaluator to tailor an evaluation technique to a specific environment is
addressed by the SEI study. The experiments that have been designed are generic ex-
periments. The evaluator derives, or "instantiates," the environment-specific technique
from the generic experiment. In the final phase of the evaluation, the results are ana-
lyzed. An advantage of the application of this methodology is that results can be com-
pared from one environment to another. See also a paper describing an application of
the SEI's method [@Gray 1987].

Methods:
[SEI Unit Testing and Debugging Experiment 7.2;
SEI Design Support Experiment 9.1;
SEI Configuration Management Experiment 10.2]

4-14

I
E&V Guidebook, Version 2.0

I 4.14 BARSTOW AND SHROBE: OBSERVATIONS ON INTERACTIVE
PROGRAMMING ENVIRONMENTS

I Citations:
[Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive
Programming Environments," in "Tutorial: Software Development Environments,"
ed. A.I. Wasserman, IEEE, 1981, pp. 285-301.

Synopsis:
This paper reviews key features of LISP-based environments and comments upon

lessons learned from these environments and future directions. These environments
encourage a "progressive enrichment" style of development rather than developments
broken into distinct phases such as specification, implementation, and maintenance.
The following set of lessons (described more fully in the paper) are concerned with theprogrammer's perception of the environment:

* It is important to be able to run an incomplete program.

* . The user should be able to view the program from many different
natural viewpoints, most of which are "structured" in nature.

* * Intercommunication among tools is extremely important.

* The programmer should not be required to know the details of the
particular language definition used in the current implementation.

The environment's interface must be highly tuned to be as natural
as possible for the human programmer.

Environment characteristics created with these lessons in mind "lead to the ultimate
goal of a programming environment (which is to increase ne ability of the programmer

*to communicate with the computer) by taking advantage of as many naturally occurring
structures as possible."

I
I

I

I
I 4-15

E&V Guidebook, Version 2.0

4.15 HOUGHTON AND WALLACE: CHARACTERISTICS AND FUNCTIONS
OF SOFTWARE ENGINEERING ENVIRONMENTS: AN OVERVIEW

Citations:
(Houghton 1987] R.C. Houghton, Jr. and D.R. Wallace. "Characteristics and
Functions of Software Engineering Environments: An Overview," ACM Software
Engineering Notes, Vol. 12 Number 1, January 1987.

Synopsis:
This paper provides a comprehensive discussion of software engineering environ-

ments in general, with no focus on Ada or any specific language. Some major topics
discussed are:

* Environment Types and Life Cycle Relationships

" Integration

* Human Factors

* Analysis and Software Quality

* Support for Different Types of Users

* Support for Application

* Hardware Support

* Levels of Support.

In its concluding section, the paper stresses that software engineering environments
should be viewed as systems that support broad categories of users and tasks through-
out the full life cycle.

4
4-16

U
E&V Guidebook, Version 2.0

E 4.16 CAIS: DoD-STD-1838

* Citations:
[DoD 1986] DoD-STD-1838, Common APSE Interface Set (CAIS), U.S. Department
of Defense, 9 October 1986, DTIC Number AD Al57 589.

Synopsis:
DoD-STD-1838, hereafter called CAIS, was developed by the KAPSE Interface

Team (KIT) and the KAPSE Interface Team for Industry and Academia (KITIA) during
the period from 1981 to 1986 as a first evolutionary step towards a full state-of-the-art
common APSE interface standard.

The CAIS is designed to promote source-level portability of Ada programs,
especially Ada software development tools. The goal of the CAIS is to promote inter-
operability (of database objects) and transportability (of APSE tools) of Ada software
across Department of Defense (DoD) APSEs. See also [@MIL 1989] and synopsis
[4.17], and the overview paper [@Oberndorf 1988].

4I
I
U
I
a
I
U
I

* 4-17

E&V Guidebook, Version 2.0

4.17 CAIS-A: MIL-STD-1838A

Citations:
[MIL 1989] "Common APSE Interface Set, Revision A," MIL-STD-1838A, April 1989,
DTIC Number AD A157 589.

Synopsis:
CAIS-A is a set of Ada package interfaces designed to enhance the transportability

of Ada Support Environment Tools. The scope of the CAIS-A includes the functionality
affecting transportability that is needed by tools, but not provided by the language. The
CAIS-A contains definitions for an entity management system for software engineering
tools. The primitive entities defined allow for the manipulation of devices, files, and
processes. CAIS-A is based on an entity-relationship approach and it allows the user to
define entities, in a limited way, by means of a typing mechanism. CAIS-A also includes
functionality to support tools requiring transaction processing, a rudimentary triggering
mechanism, and explicit control over APSE distribution.

The CAIS-A was developed by SofTech under contract to Naval Ocean Systems
Center. CAIS-A is a design enhancement to the existing CAIS (DoD-STD-1838) [@DoD
1986]; see synopsis (4.16], which was developed by the KIT and KITIA as a first evolu-
tionary step towards a full, state-of-the-art interface standard. Designers view CAIS-A
as the next step in that evolutionary process.

4-18

I
E&V Guidebook, Version 2.0

I 4.18 HOGAN AND PRUD'HOMME: DEFINITION OF A PRODUCTION QUALITY COMPILER

Citations:
[Hogan 1985] M.O. Hogan, and S.M. Prud'homme, "Definition of a Production
Quality Compiler," Aerospace Corporation, Technical Report, July 1985, DTIC3 Number AD A182 445.

Synopsis:
The study that led to this report was sponsored by the Space Division of the Air

Force Systems Command. The report "is organized as a set of prototype requirements,
along with guidance on how to tailor the requirement for specific application areas. In
this form it can be used either as a tool to help determine whether a particular compiler
is of production quality or as a guide for preparing requirements for compilers to be used
in the development and maintenance of software for mission critical computer re-3 sources."

Chapters 2 through 6 address interface requirements: user interfaces, machine
interfaces, runtime system interfaces, compiler related components interfaces, and Ada
language interfaces, respectively. Chapter 7 addresses capacity and performance re-
quirements, Chapter 8 addresses reliability requirements, Chapter 9 addresses docu-
mentation requirements. Each of the above chapters follows a standard format in which
a requirement is stated in the form: "The compiler shall . . ." and then a "Guidance"
section is provided giving background information and help in subsetting or tailoring the

* requirement for specific application domains.

I
I
I
I
I
I
I
* 4-19

E&V Guidebook, Version 2.0

4.19 NISSEN, ET AL: GUIDELINES FOR Ada COMPILER SPECIFICATION AND SELECTION

Citations:
[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al., "Guidelines for Ada Compiler
Specification and Selection," in Ada: Language, Compilers and Bibliography,
ed. M.W.Rogers, Cambridge University Press, 1984.

Synopsis:
Members of Ada-Europe produced this set of guidelines based upon a taxonomy of
compiler features. Their caveat is clear: "The relative value of information about
different features of the compiler is a matter of judgment and circumstance ... It
is the reader's responsibility to weigh each factor according to his requirements.
No liability of whatever kind shall be carried by the authors."

The taxonomy is represented by the table of contents of the guide, reproduced in
part below.

2. Host and target
3. Language-related issues
4. User-interfacing and facilities

4.1 Compiler invocation and listing management
4.2 Compilation options
4.3 Other features
4.4 Errors and warnings
4.5 Other software supplied
4.6 Compilation management

5. Performance and capacity
5.1 Host performance and capacity
5.2 Target code performance

6. Compiler and run-time interfacing
6.1 Compiler issues
6.2 Run-time system issues

7. Retargetting and rehosting
7.1 Introduction and definitions
7.2 Retargetting
7.3 Rehosting

8. Contractual matters
9. Validation

4-20

I
E&V Guidebook, Version 2.0

I Chapter 2, Host and Target, briefly treats compiler configuration issues, and pro-
vides a questionnaire [Host and target questionnaire 14.11.

Chapter 3, Language-related issues, extracts from the Ada language reference
manual [@DoD 1983] those features explicitly allowed to vary based upon machine spe-
cific characteristics [Machine-specific characteristics questionnaire 14.2].

Methods:
[Host and target questionnaire 14.1;

I Machine-specific characteristics questionnaire 14.21

4
I
I
I
I
I
I
I
I
I
I

I 4-21

E&V Guidebook, Version 2.0

4.20 WIS COMPILER EVALUATION GUIDELINES

Citations:
(WIS CEG 1985] "WIS Compiler Evaluation Guidelines," GTE Labs, Technical
Report, 1985.

Synopsis:
This document presents guidelines that provide an information base on which

specific compiler evaluation methodology and criteria can be built. Three types of
guidelines have been identified: essential characteristics, highly recommended charac-
teristics, and recommended characteristics. Also, certain questions that compiler ven-
dors should be asked regarding their compilers measurable characteristics are listed.
The guidelines take the view that the development of Ada compilers is an ongoing proc-
ess. To address this fact, the document discusses, where appropriate, general aspects
of compilers, and specific aspects of Ada compilers.

The document is broken down into four main sections. Part 1 is an introductory
section. Part 2 provides background information on Ada compilers. Part 3 discusses
compiler architecture issues. Part 4 then provides the main Ada compiler guidelines.

4-22

I
E&V Guidebook, Version 2.0

I 4.21 WIS TOOL EVALUATION CRITERIA

3 Citations:
(WIS CEC 1985] G. Gicca and C. Stacey, "Component Evaluation Criteria,"
GTE Government Systems, Technical Report, 16 August 1985.

Synopsis:
This document outlines a process to be used in evaluating currently available soft-
ware tools for inclusion in an Ada software development environment. It defines a four
phase evaluation process where each successive phase takes a more detailed view of
the particular development tool. All phases have the same basic set of evaluation cate-
gories, with the definition being refined in the following phase. There are seven such
categories. These are: "Functional Applicability," "Understandability," "Testability,"
"Evolvability," "Efficiency," "Portability," and "Human Engineering." Their definitions

* at a high level are:

Functional Applicability - the extent to which the tool or component fulfills
a current need within a software development support environment
Understandability - the extent to which the tool or component is under-
standable from a systems viewpoint

3 Testability - the ease with which a program can be tested to verify that it
performs its intended functions

Evolvability - a category that evaluates the combination of both modifiabil-
ity and expandability

Efficiency - the amount of time and space required by a program to per-
I form a function

Portability - the ease of transferring a program from one hardware con-3 figuration or software environment to another

Human Engineering - the ease of learning, operating, preparing input, and
interpreting output of a program.

Each of the four phases of the component evaluation has its own rating scheme. A
checklist is created for each category and for each sub-category within the basic evalu-
ation categories. The rating scheme itself defines a set of numbers from 1 to 5. The re-
viewer then rates a particular tool or component by assigning a value for each
sub-category. A weighting factor is then used to prioritize sub-categories and main
categories. In the end a final set of numbers is produced that allows for overall compari-
sons between tools that offer similar capabilities.

I
I
3 4-23

E&V Guidebook, Version 2.0

4.22 WEIDERMAN: COMPILER EVALUATION AND SELECTION

Citations:
[Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler Evaluation
and Selection, Version 1.0," Software Engineering Institute, CMU/SEI-89-TR-13,
March 1989, DTIC Number AD A207 717.

Synopsis:
The following Abstract is quoted directly from the cited document:
"The evaluation and selection of an Ada compilation system for a project is a complex
and costly process. Failure to thoroughly evaluate an Ada compilation system for a par-
ticular user application will increase project risk and may result in cost and schedule
overruns. The purpose of this handbook is to convince the reader of the difficulty and
importance of evaluating an Ada compilation system (even when there is no freedom of
choice). The handbook describes the dimensions along which a compilation system
should be evaluated, enumerates some of the criteria that should be considered along
each dimension, and provides guidance with respect to a strategy for evaluation. The
handbook does not provide a cookbook for evaluation and selection. Nor does it provide
information on specific compilation systems or compare different compilation systems.
Rather it serves as a reference document to inform users of the options available when
evaluating and selecting an Ada compilation system."

The chapter headings are as follows:
1. Introduction

2. Common Questions
3. Compiler Validation and Evaluation
4. Practical Issues of Selecting an Ada Compiler
5. Compile/Link-Time Issues
6. Execution-Time Issues
7. Support Tool Issues
8. Benchmarking Issues
9. Test Suites and Other Available Technology

In Chapters 4 through 8 there are a number of lists (some annotated) of criteria, factors, fea-
tures, and questions to be asked. Some of these are synopsized in, or have influenced, later
sections of this document, as indicated below.

Methods:
[Weiderman: Compiler Evaluation Lists 5.13:
Vendor Evaluation Questionnaire 99.7]

4-24

I
E&V Guidebook, Version 2.0

I

E 5. COMPILATION SYSTEM ASSESSORS

I
For the purposes of this document, the compilation system is defined as those

APSE components which are Ada-specific and are required for validation: the compiler, the

code generator, the program library management system, and the runtime support system.
n While each of these components have characteristics which should be assessed individually,

the assessment of their combined functionality will be more critical to the successful develop-

ment of mission critical software.

The criticality of assessor development for these four compilation system compo-

t nents is made evident by the many large-scale projects with requirements for the use of Ada.

These large-scale projects include the Strategic Defense Initiative (SDI), the NASA Space Sta-

I tion, the Software Technology for Adaptable, Reliable Systems (STARS) program, Army Tactical

Command and Control System, Army WWMCCS Information System (WIS), and the Advanced
I Tactical Fighter (ATF), A-12, and Light Helicopter Experimental (LHX) programs being evalu-

ated for common avionics systems under the auspices of the Joint Integrated Avionics Working

Group (JIAWG). The successful performance of these systems depends upon the quality/extent

of code generation support and execution support found in the compilation system.

I
I
I
I
I
I
3 5-1

E&V Guidebook, Version 2.0

5.1 Ada COMPILER VALIDATION CAPABILITY (ACVC)

Purpose: Validation of the completeness of the Ada compiler by means of a compiler test
suite. The ACVC consists of a test suite, analysis tools, and accompanying documenta-
tion, to enable the determination of conformance of Ada compiler implementations to the
ANSI/MIL-STD-1 815A. Note: The AJPO requires that Ada compilers pass the ACVC and
the vendor allow the distribution of the resulting Validation Summary Report (VSR) in order
for the compiler to be advertised as a commercially available Ada compiler.
[@RM: Compilation 7.1.6.7, @RM: Completeness 6.4.9]

Primary References:
[ACVC 19891 Ada Compiler Validation Procedures, Version 2.0, AJPO, May 1989.

Vendors/Agents: [National Technical Information Service]

Method: Automated test suite.
Inputs:

ACVC source code, Ada compiler and runtime system, and host (and target)
computer.

Process:
1. Obtain latest ACVC test suite
2. Following documentation, compile and run tests
3. Use analysis tools on test outputs.

Outputs:
Validation results;
Validation Summary Report (VSR).

5-2

I
E&V Guidebook, Version 2.0

I 5.2 IDA BENCHMARKS

Purpose: Evaluation of the capacity and performance of the Ada compiler by means
of a compiler test suite.

(@RM: Compilation 7.1.6.7, @RM: Capacity 6.4.6:3 @RM: Processing Effectiveness 6.4.22; @RM: Storage Effectiveness 6.4.31]

Primary References:
[IDA 19851 A.A. Hook, G.A. Riccardi, M. Vilot, and S. Welke, "User's Manual for
the Prototype Ada Compiler Evaluation Capability (ACEC)," Version 1, Institute for
Defense Analysis, IDA Paper P-1879, October 1985, DTIC Number AD A163 272.

Host/OS: VAX/VMS or any system that can read ANSI standard tapes.

Vendors/Agents: [SofTech, Inc.]

3 Method: Test suite.
Inputs: IDA source code, Ada compiler and runtime system, and host (and target)
computers.
Process:

1. Obtain test suite from agent
2. Compile and run Ada programs.

Outputs: Timing and storage measurements for individual language features.

II
I
I
I
I
I
I
U 5-3

E&V Guidebook, Version 2.0

5.3 Ada COMPILER EVALUATION CAPABILITY (ACEC)

Purpose: The purpose of this test suite is best stated by the following quote taken
from the introduction in the ACEC Reader's Guide: "The ACEC consists of a
portable test suite and support tools. ... It contains test problems designed to meas-
ure the execution time and size of a systematically constructed set of Ada examples.
The support tools assist the ACEC user in executing the test suite and analyzing the
results obtained." The scope of coverage provided by the test suite is shown by the
following excerpts from the ACEC classification taxonomy:

II. Execution Time Efficiency
A. Language Feature Efficiency

1. Required (referenced by LRM section)
2. Implementation Dependent (referenced by LRM section)

* attributes (LRM Appendix A)
* record representation clauses
* interrupts
* language interface
* unchecked programming

B. Pragmas
1. Predefined
2. Implementation Defined

C. Optimizations
1. Classical
2. Effects of Pragmas
3. Static Elaboration

* aggregates
* tasks

4. Language Specific
* Habermann-Nassi transformation for tasking
* delay statement optimization

D. Performance Under Load
1. Task Loading

* task creation
* task termination
* task abortion
* Dining Philosophers Problem
* task starvation
* task delay

2. Levels of Nesting
* static
* dynamic

3. Parameter Variation
4. Declarations

5-4

I
E&V Guidebook, Version 2.0

IE. Trade Offs
1. Design Issues

* order of evaluationI * default vs initialized records
* order of selection (rendezvous)

scope of usage (global, local, shared)
2. Coding Style Variation

F. Operating System Kernel Efficiency
1. Task Scheduling
2. Exception Handling
3. File I/O
4. Memory Management/Storage Reclamation
5. Elaboration
6. Run Time Checks
7. Interrupt Handling

G. Application Profile Tests
1. Classical

* Whetstone
* DhrystoneI * Ackerman's
* Computer Family Architecture
* Sort Variations

Math Applications
Livermore Loops

* Knuth Loops
2. Ada in PracticeI * E-3A simulator

* navigation algorithms
* radar tracking algorithms
* communication algorithms

• electronic warfare
avionics

3. Ideal Ada
Al applications
data encryption

Il1. Code Size Efficiency
A. Expansion Code Size
B. Run Time System Size
C. Executable File Size

The first version of the ACEC was released in August 1988.
[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22;
@RM: Storage Effectiveness 6.4.31]

Primary References:
(ACEC 19881 "Ada Compiler Evaluation Capability (ACEC) Technical Operating

I
I 5-5

E&V Guidebook, Version 2.0

Report (TOR) Reader's Guide," Air Force Wright Aeronautical Laboratory, Docu-
ment Number D500-11790-2, 10 August 1988, DTIC Number AD B125 147.

Vendors/Agents: [DACS]

Method: Automated test suite
Inputs: ACEC source code, Ada compiler and runtime system, host and target
computer.
Process:
1. Obtain the ACEC
2. Compile and run the tests according to the documentation
3. Use the analysis tools on the test outputs.

Outputs: Reports containing the execution time and/or code size for the selected
tests.

5-6

g E&V Guidebook, Version 2.0

I 5.4 PIWG BENCHMARK TESTS

Purpose: Identification of performance characteristics of Ada compilers. A set of tests
have been collected by the Performance Issues Working Group (PIWG) of the Special
Interest Group for Ada (SIGAda) of the Association for Computing Machinery (ACM).
The tests examine the performance of the compiler itself in terms of compilation
speed, as well as the quality of the generated code for both processing and storage
effectiveness. The test suite measures performance for both isolated language fea-
tures and composites or mixes of language features (using the Whetstone and Dhrys-
tone tests).

[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22;
(j @RM: Storage Effectiveness 6.4.311

Primary References:

Vendors/Agents: [PIWG]

Method: Automated test suite.
Inputs: PIWG source code, Ada compiler and runtime system, and host (and tar-
get) computer.
Process:
1. Obtain the latest PIWG tests
2. Compile and run tests according to the documentation.

Outputs: Reports on the outcome of each test run.

5I
I
I
I
I
I

I 5-7

E&V Guidebook, Version 2.0

5.5 UNIVERSITY OF MICHIGAN BENCHMARK TESTS

Purpose: Identification of the execution efficiency of the code generated by Ada
compilers. The tests measure only the performance of isolated language features as
they relate to real-time performance.

[@RM: Compilation 7.1.6.7, @RM: Processing Effectiveness 6.4.22]

Primary References:
[Mich 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and

T. Schultze, "Toward Real-Time Performance Benchmarks for Ada," Electrical En-
gineering and Computer Science Dept., Univ. of Michigan, RSD-TR-6-86, January
1986, pp. 1-25.

Vendors/Agents: [UMich]

Method: Test suite.
Inputs: UMichigan source code, Ada compiler and runtime system, and host (and
target) computer.
Process:

1. Obtain the UMichigan tests
2. Compile and run according to the documentation.

Outputs: Reports on the outcome of each test run.

5-8

I
I E&V Guidebook, Version 2.0

I 5.6 MITRE BENCHMARK GENERATOR TOOL (BGT)

Purpose: Evaluation of the ability of an Ada compilation system to support
development of very large systems in Ada. Under sponsorship of the Federal Avia-
tion Administration, MITRE developed the Benchmark Generator Tool (BGT). The
benchmark tests address capacity issues arising with large system developments.
The initial version (1988) includes two types of tests: Library Capacity Tests and De-
pendency Maintenance Tests.

[@RM: Compilation 7.1.6.7, @RM: Capacity 6.4.6]

Primary References:
[MITRE BGT 1986] S.R. Rainer, and T.P. Reagan, "User's Manual for ihe Ada

Compilation Benchmark Generator Tool," MITRE Corporation, MTR-87W00192-01,
January 1988.

Host/OS: Any tor which an Ada compiler exists.

Vendors/Agents: [MITRE, McLean, VA]

Method: Automated tool.
I Inputs: BGT source code, Ada compiler, and host computer.

Process:
1. Obtain the BGT
2. Compile according to the documentation.

Outputs: Results of the above analysis, including capacity limits, link time,
compilation time, etc.

I

I

I
S
!
a
1 5-9

E&V Guidebook, Version 2.0

5.7 UK Ada EVALUATION SYSTEM (AES)

Purpose: Evaluation of Ada compilers and associated linkers/loaders, program
library systems, debuggers, and run-time libraries. A test suite and a methodology
(AES) were developed by Software Sciences Ltd., under sponsorship of the UK Minis-
try of Defense (MoD). The British Standards Institute (BSI) has been sponsored by
the MoD to provide an Ada Evaluation Service, using the AES. Interested parties,
such as compiler vendors or potential compiler purchasers, may pay BSI to conduct
an evaluation or to supply a copy of an existing evaluation report.

Primary References:
[UK AES 1986] R.H. Pierce, I. Marshall, and S.D. Blude, "An Introduction to the MoD
Ada Evaluation System," Software Sciences Ltd., Report Number 5485, June 1986.

Host/OS: Any for which an Ada compiler exists.

Vendors/Agents: [BSI, Milton-Keynes, UK]

Method: Automated test suite and questionnaire.
Inputs: AES source code and questionnaire, Ada compiler and runtime system,
and host (and target) computer.
Process: Pay BSI to do an evaluation or purchase an existing evaluation report.
Outputs: An Evaluation Report organized in a standard format.

5-10

S
£ E&V Guidebook, Version 2.0

5.8 COMPILATION CHECKLIST

Purpose: Evaluation of the power of compilation by developing a list of functional
capabilities.

[@RM: Compilation 7.1.6.7, @RM: Power 6.4.21)

IPrimary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.
[Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

3Method: Capabilities checklist
Inputs: Capability checklist (see Table 5.8-1) and compiler documentation.
Process: Check off capabilities demonstrated during compiler runs or discussed in
the documentation.
Outputs: A list of capabilities provided by the compiler.

I
S
I
S

1 5-11

E&V Guidebook, Version 2.0

Table 5.8-1 Compilation Capabilities Checklist

FEATURE FOUND

Conditional Compilation
Incremental Compilation
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Error Identification
Set Default Directory For Source
Set Listing Width And Height
Specify Different Program Library
Specify Main Program
Disable Use Of SYSTEM Library
Change package SYSTEM
Suppress All Run-Time Checks
Compile Multiple Files
Language Sensitive Editor Support
Specify Error Limit
Enable/Disable An Error Category
Specify Optimization Parameters
Syntax Only Checking
Symbol Table
Variable Set/Use Indications (Cross Reference)
Object Code ' .,,g
Object Attribute Map
Code Statistics
Unidentified Compiler Options (Pragmas)
Controlled Dynamic Storage
Elaboration Control
Inline Expansion Of Subprograms
Interface With Other Languages
Specify Memory Size
Pack Data Representations In Memory
Priority Control Of %_n,1_"Jrsent Tasks
Shared Variables
Specify Storage Unit
Specify Alternative System Characteristics
Machine Code Mapping
Machine Code Insertions
Cross Compilation

Error Reporting
Exceptions List

Identify Target Dependencies
Save User Configuration
Shared Generic Support

5-12

!
gE&V Guidebook, Version 2.0

5.9 PROGRAM LIBRARY MANAGEMENT CHECKLIST

Purpose: Evaluation of the completeness and power of program library management
by developing a list of functional capabilities.

[@RM: Program Library Management 7.2.1.7, @RM: Completeness 6.4.9;3 @RM: Power 6.4.21]

Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.
[Classification Schema/E&V Taxonomy Checklists: 4.4]

9Vendors/Agents: (E&V Team]

Method: Capabilities checklist
Inputs: Capabilities checklist (see Table 5.9-1) and program library manager docu-
mentation.
Process: Check off capabilities demonstrated by the program library manager or
discussed in the documentation.
Outputs: A list of capabilities provided by the program library manager.

3 Table 5.9-1 Program Library Management Capabilities Checklist

FEATURE FOUND

Listing Information
List Of Logical Unit Names
Associated File Names For Unit
Units Using Specified Unit
Units Used By Specified Unit
Size Information
Time-Stamp Information
Kind And Granularity Of Compilation Element

Units Used To Construct Executable
Completeness And Currency Check
Automatic Build Capability
Automatic Compilation/Recompilation
Spawn Command Language Subprocess
Create Structures
Move Elements Between Libraries
Move Elements Between Directories
Remove Compilation Unit
Obsolescence Management
Library Access Control

Read Only (Shared)
Exclusive

5
15- 13

E&V Guidebook, Version 2.0

5.10 ARTEWG CATALOGUE OF Ada RUNTIME IMPLEMENTATION DEPENDENCIES

Purpose: The purpose of this document is best stated by the following quotation taken
from the rationale section in the catalogue: "The main goal of this catalogue is to be
the one place where all the areas of the Ada Reference Manual ... which permit im-
plementation flexibilities can be found." These implementation dependencies affect
the performance and adaptation characteristics of the generated code. The text de-
scribes each known dependency by a number (which identifies the relevant section
and paragraph in the Ada Reference Manual), a topic or title, a question which poses
the implementation issue, a dependency type (either explicit or implicit), a rationale
explaining why the dependency exists, and an Ada example to further clarify the de-
pendency. (These descriptions could be used as the basis for an automated test
suite.)

[@RM: Compilation 7.1.6.7, @RM: Anomaly Management 6.4.2:
@RM: Processing Effectiveness 6.4.22; @RM: Retargetability 6.4.27;
@RM: Storage Effectiveness 6.4.31]

Primary References:
[ARTEWG 1987] Catalogue of Ada Runtime Implementation Dependencies,"
Association for Computing Machinery, Special Interest Group on Ada,
Ada Runtime Environment Working Group, 1 December 1987.

Vendors/Agents: [ARTEWG]

Method: Questionnaire.
Inputs: Descriptions of implementation dependent features.
Process:

1. Select critical dependencies
2. Build and run tests for each dependency or ask vendor how

dependencies are implemented
3. Select compiler and/or make coding standards based on results of step 2.

Outputs: Evidence showing how features are implemented.

5-14

I
E&V Guidebook, Version 2.0

I 5.11 ARTEWG RUNTIME ENVIRONMENT TAXONOMY

Purpose: Describes the basic elements of Ada runtime environments and provides a
common vocabulary. The following excerpt is taken from the introduction to the Tax-
onomy section. "If a runtime environment for an Ada program is composed of a set
of data structures, a set of conventions for the executable code, and a collection of
predefined routines, then the question arises: what are examples of these elements,
and moreover, what is the complete set from which such elements are taken when a
particular runtime environment is built?... It should be noted that the dividing line be-
tween the predefined runtime support library on one hand, and the conventions and
data structures of a compiler on the other hand, is not always obvious. One Ada im-
plementation may use a predefined routine to implement a particular language fea-

!! ture, while another implementation may realize the same feature through conventions
for the executable code. ... This taxonomy concerns itself primarily with those as-
pects of the runtime execution architecture which are embodied as routines in the
runtime library. It does not treat issues of code and data conventions, nor issues re-
lated to particular hardware functionalities, in any great depth."

[@RM: Runtime Environment 7.2.3.5, @RM: Completeness 6.4.9]

IPrimary References:
[ARTEWG 1988] "A Framework for Describing Ada Runtime Environments," Pro-
posed by Ada Runtime Environment Working Group (SIGAda), Ada Letters, Volume
VIII, Number 3, May/June 1988, pp. 51-68.

Vendors/Agents: [ARTEWG]

Method: Questionnaire
Inputs: Questionnaire (see Table 5.11-1) and runtime environment documentation.1Process: Describe capabilities demonstrated by the runtime environment or dis-
cussed in the documentation.3 Outputs: A description of capabilities provided by the runtime environment.

I|

I
55-15

E&V Guidebook, Version 2.0

Table 5.11-1 Runtime Environment Taxonomy

CAPABILITY DESCRIPTION

Runtime Execution Model
Generated Code

Number of Areas for Package Data
Mechanism for Uplevel Referencing of Objects (static link or

display)
Subprogram Call Sequences
Parameter Passing Mechanisms
Register Usage
Preservation of Registers across Subprogram Calls
Representation of Pointers
Implementation of Runtime Type Checks
Data Structures in the RTE

Division between Inline Code and Runtime Routines
Tasking Constructs
Memory Management
Exception Management
Attributes
Miscellaneous Commonly Invoked Routines

Use of Target Instruction Set Architecture
User-Visible Interfaces to Extend the Runtime System

Dynamic Memory Management
Stack Management
Heap Management

Single Heap or One Heap/Task
Arrangement of Storage for Collections
Storage Reclamation

None
Explicit (Unchecked Deallocation)
Garbage Collection
Pragma Controlled

Processor Management
Block Tasks
Unblock Tasks
Selection of Tasks which Actually Run

Task Priorities
Assignment to Physical Processor

5-16

S
E&V Guidebook, Version 2.0

I
Table 5.11-1 Runtime Environment Taxonomy (Continued)

CAPABILITY DESCRIPTION

Interrupt Management
Asynchronous Events

Timer Interrupts
I/O Interrupts
Hardware Failures
Others

Program Synchronous Events
Arithmetic Overflow
Arithmetic Underflow
Divide by Zero
Others

Address Clauses for Task Entries
Interrupt Initialization
Interrupt Resetting

Time Management
Package Calendar
Delay Statement Implementation

Exception Management
Finds Exception Handler for Exception
Transfers Control to Exception Handler

Rendezvous Management

Task Activation

Task Termination
Task Completion
Task Termination
Task Abortion

I/O Management
Predefined Packages from Chapter 14 of ARM

I Additional I/O Facilities

5

5 5-17

E&V Guidebook, Version 2.0

Table 5.11-1 Runtime Environment Taxonomy (Continued)

CAPABILITY DESCRIPTION

Commonly Called Code Sequences
Multi-Word Arithmetic Operations
Block Moves
String Operations
Attribute Calculations
Others

Target Housekeeping Functions
Starting the Execution Environment

Determining the Hardware Environment
Determining the Software Environment
Processor Initialization
Interrupt Initialization
Other

Terminating the Execution Environment

5-18

E&V Guidebook, Version 2.0

5.12 COMPILER ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of the compiler shown in
Fig. 5.12-1. Requirements for each element in the hierarchy are listed for certain at-
tributes. Each requirement is augmented by one or more questions which address
the requirement.

(@RM: Compilation 7.1.6.7, @RM: Attributes 6.]

Primary References:
[E&V Report 1984] "Requirements for Evaluation and Validation of Ada Programming
Support Environments, Version 1.0," 17 October 1984, Appendix B of "Evaluation
and Validation (E&V) Team Public Report," Air Force Wright Aeronautical Laborato-
ries, November 1984, pp. B-45 - B-85, DTIC Number AD A153 609.

[Requirements for E&V: 4.5]

Vendors/Agents: [E&V Team]

Method: Questionnaire
Inputs: Questionnaire and compiler documentation.
Process: Answer questions based on documentation, using the compiler, or ask-
ing the vendor.
Outputs: Completed questionnaire.

Compiler
Input

Command Language
User Assistance
Source Statements

Translation
Analysis
Intermediate Forms
Optimization
Symbol Table

Code Generation
Debugging
Optimization

Output
Analysis
Cross-Reference
Listing
Object Module

Runtime System
Memory Management
Task Management

Distributed Processing
Parallel Processing

Exception Handling
Data Management
Mathematical Functions

9i Figure 5.12-1 Compiler Hierarchy

5-19

E&V Guidebook, Version 2.0

5.13 WEIDERMAN: COMPILER EVALUATION LISTS

Purpose: This handbook "describes the dimensions along which a compilation system
should be evaluated, enumerates some of the criteria that should be considered
along each dimension, and provides guidance with respect to a strategy for evalua-
tion." Table 5.13-1 below provides a "list of lists" found in Chapters 5, 6, and 8 of
the handbook. Refer to the handbook itself for the actual elements of each list. In
some cases the elements are simply listed; in other cases they are annotated with
additional explanation and discussion.

(@RM: Compilation 7.1.6.7, @RM: Attributes 6.]

Primary References:
[Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler Evaluation
and Selection, Version 1.0," Software Engineering Institute, Technical Report CMU/
SEI-89-TR-13, March 1989, DTIC Number AD A207 717.

[Weiderman: Compiler Evaluation and Selection: 4.22]

Vendors/Agents: [SEI]

Method: Checklists and Questionnaires
Inputs: Lists, characterization forms, and accompanying discussion (see
Table 5.13-1).
Process: Employ lists to evalute appropriate dimensions, as indicated in the hand-
book.
Outputs: Lists of capabilities and completed characterization forms.

5-20

S
E&V Guidebook, Version 2.0

Table 5.13-i Compiler Evaluation Lists

ICompile/Link-Time Issues (Chapter 5)
e Compiler options often provided (5.1.1)
e Implementation-defined pragmas (5.1.2)
* Other important compiler features (5.1.4)
* Factors influencing "lines of code per minute" (5.2)
* Questions to be answered (5.2)
* Capacities and limits tested by the AES [5.7] (5.2)
* Documentation characteristics (5.4.3)

IExecution-Time Issues (Chapter 6)
e Features not likely to generate calls to the runtime system (6.2.7): Features likely to generate calls to the runtime system (6.7.2)
e Optimizations that can be performed (6.2.3)
e Features critical to tasking performance (6.4.1)
* Operations concering exception handling whose overhead can be measured (6.4.2)
* Areas of concern related to space efficiency of the runtime system (6.5)
* Useful features of runtime systems (6.6)
* Questions related to interrupt handling (6.8)

Benchmark Issues (Chapter 8)
* Factors causing variation in results (8.2)

Memory effects
Processor effects

* Operating and runtime system effectsI Program translation effects
Standard benchmark configuration information (8.7)
* For the host system

For the target system
For all benchmarks

i
I
i
i
I
55-21

E&V Guidebook, Version 2.0

5.14 RUNTIME SUPPORT SYSTEM QUESTIONNAIRE

Purpose: Characterization and evaluation of the Runtime Support (RTS) system.
[@RM: Runtime Environment 7.2.3.5; @RM: Anomaly Management 6.4.2;
@RM: Communication Effectiveness 6.4.8; @RM: Completeness 6.4.9;
@RM: Functional Scope 6.4.15; @RM: Generality 6.4.16; @RM: Granularity
6.4.17; @RM: Modularity 6.4.19; @RM: Retargetability 6.4.27: @RM: System
Accessibility 6.4.32; @RM: System Compatibility 6.4.34]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire
Inputs: Questionnaire 'see Fig. 5.14-1) and runtime support system documenta-
tion.
Process: Answer questions based on documentation, using the runtime support
system, or asking the vendor.
Outputs: Completed questionnaire.

Is support provided for - single processor only?
- multiple homogenous processors?
- multiple heterogenous processors?

* calls made to another process?
* actual synchronization?

Is support provided for - single programs?
- multiple programs?

Is support provided for - tight coupling (characterized by shared/common memory)
- loose coupling (communicate but no shared/common

memory)

Does the RTS - require use of the operating systems?
- accept instructions from the operation system?
- replace the operating system?

Is the RTS - modularly constructed?
- modifiable - (standard modifications or user-defined)?
- sub-settable?
- fault tolerant?
- secure?

What are the language features that are supported?
- How are they supported?

Figure 5.14-1 Runtime Support System Questionnaire

5-22

E&V Guidebook, Version 2.0

i
6. TARGET CODE GENERATION AIDS AND ANALYSIS

TOOLSET ASSESSORS

5 These tools are used to assess host-target system cross-assemblers; host-based
target linkers and loaders; host-based target system instruction-level simulators/emulators; host-Ibased target-code symbolic debuggers; and host-based target system instrumentation inter-
faces which provide visibility into target processes during program execution. These

I assessments are also used in the case where the host computer is also the target computer.

6
I
I
I
I
I
!
I
!
!
5 6-1

E&V Guidebook, Version 2.0

6.1 ASSEMBLING CHECKLIST

Purpose: Evaluation of the power of assembling by developing a list of functional
capabilities.

[@RM: Assembling 7.1.6.6, @RM: Power 6.4.21]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.1-1) and assembler documentation.

Process: Check off capabilities demonstrated during assembler runs or discussed
in the documentation.

Outputs: A list of capabilities provided by the assembler.

Table 6.1-1 Assembling Capabilities Checklist

FEATURE FOUND

Code Generation
Macro Preprocessing
Conditional Assembly
Debug Information Generation
Enable/Disable Listing
Errors Only Listing
Set Listing Width and Height
Suppress All Run-Time Checks
Assemble Multiple Files
Specify Error Limit
Enable/Disable An Error Category
Syntax Only Checking
Symbol Table
Code Statistics
Cross Assembly

6-2

S
E&V Guidebook, Version 2.0

6.2 LINKING/LOADING CHECKLIST

V Purpose: Evaluation of the power of linking/loading by developing a list of functional
capabilities.
[@RM: Linking/Loading 7.1.6.13, @RM: Power 6.4.21]

5Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

I Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.2-1) and linker/loader documentation.

Process: Check off capabilities demonstrated during linker/loader runs or dis-
cussed in the documentation.

*Outputs: A list of capabilities provided by the linker/loader.

Table 6.2-1 Linking/Loading Capabilities Checklist

FEATURE FOUND

Non-Specific Language Linking
Deferred (After A Specific Time)
Enable/Disable Link Map Generation
Specify Full/Brief Link Map
Generate A Link Command File
Enable/Disable Symbol Cross-Reference
Generate Debug Information
Enable/Disable Execution File Creation
Specify Batch/Nobatch Operation
Specify Map File Name
Specify Object File Name
Specify Diagnostic Output File
Enable/Disable System Library Search
Enable/Disable Traceback Information
Library Search Capabilities
Extended Options Capabilities
Sharable Image Support
Specify Maximum Memory
Specify Optimization Parameters
Force Load
Enable/Disable Library Trace
Specify Main Program
Non-Specific Language Main Program
Overlays
Link-Time Dead Code Elimination

6-3

E&V Guidebook, Version 2.0

6.3 IMPORT/EXPORT CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of import/export by developing a list of functional
capabilities.

[@RM: Import/Export 7.2.3.6, @RM: Completeness 6.4.9]

Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.3-1) and import/export documentation.

Process: Check off capabilities demonstrated by the import/export system or dis-
cussed in the documentation.

Outputs: A list of capabilities provided by the import/export system.

Table 6.3-1 Import/Export Capabilities Checklist

FEATURE FOUND

Host to Target Object Downloading
Target to Host Data Uploading j

Note: This table will be expanded in a future version of the Guidebook.

6-4

I

E&V Guidebook, Version 2.0

R 6.4 EMULATION CAPABILITIES CHECKLIST

Purpose: Evaluation of the power of emulation by developing a list of functional
capabilities.

[@RM: Emulation 7.3.2.13, @RM: Power 6.4.21]

5Primary References:

Vendors/Agents: [E&V Team]

I Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.4-1) and emulation system documenta-
* tion.

Process: Check off capabilities demonstrated by the emulation system or dis-3 cussed in the documentation.

Outputs: A list of capabilities provided by the emulation system.I
Thble 6.4-1 Emulation Capabilities Checklist

1 FEATURE FOUND

Session security (lock-out unauthorized users)
RS-232 interface to host (portable among hosts)
Replaceable target pods (portable among targets)
Support for simulating hardware devices
Switching screen (user vs. debug displays)
Read/write access to program library symbols
Runtime controls of the state of the emulator
Read/write access to target memory and I/0
Full-speed execution with active breakpoints
Full-speed execution while tracing
Dynamic window for variables
Multi-task tracing

*Exception tracing

6
I
!

i 6-5

E&V Guidebook, Version 2.0

6.5 DEBUGGING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of debugging by developing a list of
functional capabilities.

[@RM: Debugging 7.3.2.5, @RM: Completeness 6.4.9; @RM: Power 6.4.21]

Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.5-1) and debugger documentation.

Process: Check off capabilities demonstrated by the debugger or discussed in
the documentatioi.

Outputs: A list of capabilities provided by the debugger.

6-6

I
E&V Guidebook, Version 2.0

Table 6.5-1 Debugging Capabilities Checklist

FEATURE FOUND

Instrumentation
Statement
Branch
Block
CSU
CSC

Machine Level Debugging
Host-Based Target DebuggingSupport for Debugging Multiple Processors from Single Terminal

Customization of Debugger for New Target Environment
Symbolic Debugging

Tracing
Breakpoint Control

Data Flow TracingI Path Flow Tracing

Selectable Level Of Granularity
Display

Program Source
History
Stack (Calling Hierarchy)
Tasks

Rendezvous Status
Breakpoints
Tracepoints
Memory

Collections And Global Heaps
Name Of Current Exception

Evaluate Objects
Step

Single
By Discrete Amounts
Into Subprograms
Over Subprograms
To Next Scheduling Event
To Next Exception
To End of Program Unit

Miscellaneous
Symbol Abbreviation
Set Context For Control
Input Debugger Command Files
Modify Variable Values
Modify Object Code
Modify Control Flow
Console Interrupt
Full Screen Mode
Keypad For Entering Commands
Virtual Clock
Special Compilation Mode
Multi-Language Support
Complete Ada Language Support with Deep Nesting
Dynamic Interrupt
Optimization Support
Units Comprising Executable
Locate Objects with Overloaded Names
No Overhead to Explicitly Create a Debug File

6
*6-7

E&V Guidebook, Version 2.0

6.6 TIMING ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of timing analysis by developing a list of function-
al capabilities.

[@RM: Timing Analysis 7.3.2.14, @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.6-1) and timing analysis system docu-
mentation.

Process: Check off capabilities demonstrated by the timing analysis system or
discussed in the documentation.

Outputs: A list of capabilities provided by the timing analysis system.

Table 6.6-1 Timing Analysis Capabilities Checklist

FEATURE FOUND

Timing Instrumentation
Intrusive
Non-Intrusive
User Specified Error Tolerances
Use of Timing Loop
Repetitive Execution Until Stable Convergence
Measurement of Overhead Execution
Test for Clock Jitter
System Clock Accuracy Consideration
Hardware Organization (Cache, Pipeline ...) Considerations
Operating System (Virtual, Multiprocessing ...) Considerations
Size of Test Problem Considerations

Fraction By Section Of Code
Tasking Monitor

Fraction Executing
Fraction Runnable
Fraction Runnable and not Executing
Time Between Runnable and Executing
Time Between Events
System Idle Time

Miscellaneous
Timing Loop Code is System Independent
Special Hardware is not Needed
Code to be Measured is Easily Installed
Output Shows Variations in Measurements
Statistical Measurements are Available
Use of Computer Resources is Minimized
Measures Either Wall or Clock Time

6-8

i

g E&V Guidebook, Version 2.0

I 6.7 REAL-TIME ANALYSIS CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of real-time analysis by developing a list of func-
tional capabilities.

[@RM: Real-Time Analysis 7.3.2.17, @RM: Completeness 6.4.9]

3 Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

(Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

I Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 6.7-1) and real-time analysis system3 documentation.

Process: Check off capabilities demonstrated by the real-time analysis system or
discussed in the documentation.

Outputs: A list of capabilities provided by the real-time analysis system.

STable 6.7-1 Real-time Analysis Capabilities Checklist

5 FEATURE FOUND

Hardware-In-The-Loop
Non-Intrusive Instrumentation
Performance Analysis5 Symbolic Trace

6
I
I
I

i 6-9

E&V Guidebook, Version 2.0

6.8 INSTRUCTION-LEVEL SIMULATION CHECKLIST

Purpose: Evaluation of the completeness of instruction-level simulation by developing a list
of functional capabilities

[@RM: Simulation and Modeling 7.3.2.3, @RM: Completeness 6.4.9]

Primary References:
[Weiderman 1987b] N.H. Weiderman, et al., "Ada for Embedded Systems: Issues and
Questions." Software Engineering Institute, Technical Report CMU/SEI-87-TR-26,
December 1987, DTIC Number AD A191 096.

Vendors/Agents: [SEI]

Method: Checklist.

Inputs: Capabilities checklist (see Table 6.8-1) and instruction-level simulation sys-
tem aocumentation.

Process: Check off capabilities demonstrated by the instruction-level simulation
system or discussed in the documentation.

Outputs: A list of capabilities provided by the instruction-level simulation system.

Table 6.8-1 Instruction-level Simulation Checklist

FEATURE FOUND

Accurately simulates both the functional and temporal behavior of the
target's instruction set architecture
Provides access to all memory locations and registers
Supports typical featu. es found in a symbolic debugger

Single-step instruction execution
Examines variable values
Start/stop program execution

Performs timing analysis
Provides assembler instruction execution times
Provides Ada instruction execution times
Provides Ada subprogram execution times

Supports simulated input/output interaction
Provides access to I/O ports
Provides access to device control and data registers
Emulates the architecture's interrupt mechanism

Facilitates the set-up and reuse of test sessions
Freezes the current session's context
Executes debugger commands from script files
Supplies I/0 data from existing data files

6-10

I
E&V Guidebook, Version 2.0

I
I 7. TEST SYSTEMS ASSESSORS

5 These assessors examine the ability of the APSE or APSE component to sup-

port and facilitate the planning, development, execution, evaluation, and documentation of
g tests of software.

7.1 TESTING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of testing by developing a list of func-
tional capabilities.
[@RM: Analysis 7.3, @RM: Completeness 6.4.9; @RM: Power 6.4.21]

5 Primary References:
[DeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and Evaluation
Subenvironment in an Advanced Software Engineering Environment," Georgia
Institute of Technology GIT-SERC-86/07, 20 October 1986.

Vendors/Agents: [GIT]

SMethod: Capabilities checklist

Inputs: Capabilities checklist (see Table 7.1-1) and testing system documentation.

IProcess: Check off capabilities demonstrated by the testing system or discussed in
the documentation.

* Outputs: A list of capabilities provided by the testing system.

7
I
I

~7-1

E&V Guidebook, Version 2.0

Table 7.1-1 Testing Capabilities Checklist

FEATURE FOUND

Static Analyzers
Code Auditors
Consistency Checkers
Interface Analyzers
Completeness Checkers

Tool Building Services
Common "Front-End" Facilities for Languages of Interest (Parsing,

Source & Internal Form Manipulation, Execution Facilities)
Tool Composition Aids

Test Building Services (including Test Data ,enerators)
Symbolic Evaluators
Component Coverage Analyzers
Data Flow Analyzers
Assertion Processors
Mutation Analyzers
Path and Domain Selection Aids
Random Test Generators

Test Description and Preparation Services
Data Editors
Data Auditors
Body/Stub Generators
File Comparators
Data/File Services
Software and System Test Communications Facilities

Test Execution Services
Test Harness Generator
Data and Error Logging Services
Quality Measurement Tools

Test Analysis Services
Correctness Analyzers (Oracles)
Instrumentation Aids
Status Display Tools
Data Reduction and Analysis Tools
Cross Reference (Traceability) Management and Analysis Tools

Decision Support Services
Documentation Services
Information Repositories
Problem Report Processing and Analysis Tools
Change Request Processing and Analysis Tools

7-2

E&V Guidebook, Version 2.0

7.2 SEI UNIT TESTING AND DEBUGGING EXPERIMENT

Purpose: Evaluation of an environment's capabilities, from the point of view of the
unit tester. An experiment was designed to simulate the activities normally associated
with small projects, namely the design, creation, modification, and testing of a single
unit or module. See also the SEI Design Support Experiment [9.1].

[@RM: Debugging 7.3.2.5, @RM: Power 6.4.21;
@RM: Debugging 7.3.2.5, @RM: Processing Effectiveness 6.4.22;
@RM: Dynamic Analysis 7.3.2, @RM: Power 6.4.21:
@RM: Dynamic Analysis 7.3.2, @RM: Processing Effectiveness 6.4.22]

Primary References:
[Weiderman 1987] N. Weiderman and N. Haberman, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987,
Chapter 6, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments, 4.13]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEI]

Method: Structured experiment

Inputs: The "generic" experiment description, an APSE, and host (and target) com-
puter.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in table of functional elements present and missing, elapsed time and
cpu time values, and subjective judgments based on the experience.

7

£

E&V Guidebook, Version 2.0

8. TOOL SUPPORT COMPONENT ASSESSORS

These assessors evaluate or validate implementations of specifications for tool sup-

port components. Components that may be assessed could include a CAIS or a CAIS-A imple-
mentation, Portable Common Tool Environment (PCTE) implementations, and Ada language
interfaces to the UNIX operating system and its variants (e.g., Berkeley UNIX, System V, A/UX,
POSIX). Also included here are window managers (such as X-windows), language bindings to

standard interface specification implementations (such as Ada bindings to GKS or SQL), I/O

pipes, and RAM cache.

8-1

U
E&V Guidebook, Version 2.0 1

8.1 CAIS IMPLEMENTATION VALIDATION CAPABILITY (CIVC) 5
Purpose: Assess the conformance of CAIS implementations to the DoD-STD-1838

standard. The CIVC consists of a test suite, analysis tools, and associated documenta-
tion which enable validators and CAIS implementors to determine the completeness of
CAIS implementations with respect to conformance to the standards. The test suite
consists of tests to be compiled and executed with interfaces provided for a CAIS im- 3
plementation. Analysis tools are utilized for aiding the users in selecting tests and ob-
taining results.

[@RM: Kernel 7.2.3.3, @RM: Completeness 6.4.9] i

Primary References: [CIVC 1989] "CIVC1 Implementor's Guide," Air Force Wright Aeronau-
tical Laboratory, CIVC-FINL-019, October 1989, in progress. 3

Vendors/Agents: TBA

Method: Automated test suite I
Inputs: The CIVC test suite, CAIS imolementation, Ada compiler and runtime system,

and host computer.

Process: I
1. Obtain the CIVC test suite
2. Compile and run the tests 3
3. Collect and analyze the results.

Outputs: Report describing the conformance of various aspects of the CAIS imple-
mentation to DoD-STD-1838.

1
I
I
!

I
I

8-2 I

E&V Guidebook, Version 2.0

8.2 TOOL SUPPORT INTERFACE EVALUATION

Purpose: Evaluation of tool support interfaces in terms of four criteria: level,
appropriateness, implementability, and performance. Five "scenarios" were designed
and used to exercise a prototype CAIS implementation and a prototype PCTE imple-
mentation. The scenarios involved a configuration management system, an edit-com-
pile-link-test cycle, a conference management system, a window manager, and a
design editor.

[@RM: Kernel 7.2.3.3]

Primary References:
[Long 1988] F.W. Long, and M.D. Tedd, "Evaluating Tool Support Interfaces,"
Ada in Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June 1988,
Cambridge University Press, 1988.

Host/OS: Sun

Vendors/Agents: (College of Wales, UK]

Method: Structured experiment

Inputs: The source code for the scenarios, the tool support interface(s) (CAIS, PCTE,
other), Ada compiler and runtime system, and host computer.

Process:
1. Obtain the source code for the scenarios
2. Compile and run the scenario(s)
3. Collect the results.

Outputs: Objective result- and subjective conclusions concerning the impact on tool
writers and the cost and behavior of the interface implementation.

8-3

I
IE&V Guidebook, Version 2.0

a
I 9. REQUIREMENTS/DESIGN SUPPORT ASSESSORS

I
These assessors measure the suitability and effectiveness of various software defi-

niti.. specification, and design tools. This specifically includes assessors of Ada Program De-

sign Language (PDL) implementations and/or guidelines in the use of Ada as a PDL.I
9.1 SEI DESIGN SUPPORT EXPERIMENT

I Purpose: Evaluation of the design and code development capabilities of an environment,
as represented in a small project. An experiment was designed to simulate the activi-
ties normally associated with small projects, namely the design, creation, modification,
and testing of a single unit or module. See also the SEI Unit Testing and Debugging
Experiment [7.2].

[@RM: Preliminary Design 7.1.6.4, @RM: Power 6.4.21;
@RM: Preliminary Design 7.1.6.4 @RM: Processing Effectiveness 6.4.22;
@RM: Preliminary Design 7.1.6.4, @RM: Storage Effectiveness 6.4.31;

@RM: Detailed Design 7.1.6.5, @RM: Power 6.4.21;
@RM: Detailed Design 7.1.6.5, @RM: Processing Effectiveness 6.4.22;@RM: Detailed Design 7.1.6.5, @RM: Storage Effectiveness 6.4.31]

Primary References:
[Weiderman 19871 N. Weiderman and N. Haberman, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987,
Chapter 5, DTIC Number AD A180 905.

(Weiderman: Evaluation of Ada Environments, 4.13]

I Host/OS: VAXNMS and VAX/UNIX

Vendors/Agents: [SEI]

3 Method: Structured experiment.

Inputs: The "generic" experiment description, an APSE, and host computer.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in checklist of functional elements present and missing, tables of
time and space data, and subjective judgments based on the experience.

3 9-1

E&V Guidebook, Version 2.0

9.2 REQUIREMENTS PROTOTYPING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of requirements prototyping by developing a list
of functional capabilities.

[@RM: Requirements Prototyping 7.3.2.2, @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 9.2-1) and requirements prototyping docu-
mentation.

Process: Check off capabilities demonstrated by the requirements prototyping system
or discussed in the documentation.

Outputs: A list of capabilities provided by the requirements prototyping system.

Table 9.2-1 Requirements Prototyping Capabilities Checklist

FEATURE FOUND

Standards Requirements Libraries
Executable Specifications
Fourth Generation Languages or Very High Level Languages
Reusable Building Blocks and Associated Tools
Man-Machine Interface Prototyping Capabilities
Applications Generators
Previous Software Version Import Capabilities

9-2

U
i E&V Guidebook, Version 2.0

I 9.3 SIMULATION AND MODELING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of simulation and modeling by developing a list
of functional capabilities.

[@RM: Simulation and Modeling 7.3.2.3, @RM: Completeness 6.4.9]

I Primary References:
[ISTAR 1987] Workshop on Future Development Environments, Information Science
and Technology Assessment for Research, Conference on Information Mission
Area (IMA) Productivity, Department of Army Director of Information Systems for
Command, Control, Communications and Computers, 13-15 April 1987, pp 28.

rn Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 9.3-1) and simulation and modeling docu-
mentation.

5 Process: Check off capabilities demonstrated by the simulation and modeling sys-
tem or discussed in the documentation.

3 Outputs: A list of capabilities provided by the simulation and modeling system.

9
I
I
I
I
I
I

1 9-3

E&V Guidebook, Version 2.0

Table 9.3-1 Simulation and Modeling Capabilities Checklist

FEATURE FOUND

Conceptual Modeling Support
Domain-Specific Knowledge Base
Inferencing Systems
Operational Environment Modeling Support
User Modeling Support
Model Browsers
Game and Risk Models Database
Functional Allocation Methodologies Database
Scaling Rules Database
Constraint Evaluation Tools
Precision Estimators
Computer System Modeling

Interface/Input Support
Graphical
Menus
Tabular
Command

Model Subject
Control Flow
Information Flow
Human/Machine Procedures

Outputs
Response Time Estimates
Throughput Estimates
Resource Utilization Estimates

System Types Supported
Real Time
Distributed
Multiprocessor

Standard Computer System Models Database
Preprogrammed Models of Common Distributed System Functions
Underlying Mathematical Theory (e.g., Queueing Network Theory)

9-4

I
i E&V Guidebook, Version 2.0

I 9.4 NADC/SPS CASE TOOLS EVALUATION

Purpose: Development of evaluation criteria and evaluation of selected candidate methods and
tools. The focus of this investigation was Computer Aided Software Engineering (CASE)
tools and methods applied during the early life cycle phases/activities (system and software
requirements and top-level design) and applied to large, time-critical systems. Three com-

i• mercially available CASE tools were selected for evaluation, following an initial survey of
more than 100 possibilities. An experiment based on a sample problem (submarine detec-
tion with a sonobouy) was created and carried out using three systems. Evaluation criteria,
detailed questions, and a scoring system were developed and applied in three areas: meth-
od, automation, and vendor support.

[@RM: System Requirements 7.1.6.1, @RM: Augmentability 6.4.4;
@RM: Software Requirements 7.1.6.2, @RM: Augmentability 6.4.4;
@RM: Preliminary Design 7.1.6.4, @RM: Augmentability 6.4.4:
@RM: System Requirements 7.1.6.1, @RM: Capacity 6.4.6;
@RM: Software Requirements 7.1.6.2, @RM: Capacity 6.4.6;
@RM: Preliminary Design 7.1.6.4, @RM: Capacity 6.4.6;
@RM: System Requirements 7.1.6.1, @RM: Completeness 6.4.9;
@RM: Software Requirements 7.1.6.2, @RM: Completeness 6.4.9:
@RM: Preliminary Design 7.1.6.4, @RM: Completeness 6.4.9;
@RM: System Requirements 7.1.6.1, @RM: Processing Effectiveness 6.4.22;
@RM: Software Requirements 7.1.6.2. @RM: Processing Effectiveness 6.4.22:
@RM: Preliminary Design 7.1.6.4, @RM: Processing Effectiveness 6.4.22:
@RM: System Requirements 7.1.6.1, @RM: Self Descriptiveness 6.4.28;
@RM: Software Requirements 7.1.6.2, @RM: Self Descriptiveness 6.4.28;
@RM: Preliminary Design 7.1.6.4, @RM: Self Descriptiveness 6.4.28;
@RM: System Requirements 7.1.6.1, @RM: System Clarity 6.4.33;
@RM: Software Requirements 7.1.6.2, @RM: System Clarity 6.4.33;
@RM: Preliminary Design 7.1.6.4, @RM: System Clarity 6.4.33:
@RM: System Requirements 7.1.6.1, @RM: Training 6.4.36;
@RM: Software Requirements 7.1.6.2, @RM: Training 6.4.36;
@RM: Preliminary Design 7.1.6.4, @RM: Training 6.4.36]

Primary References:
[Donaldson 1988] C. Donaldson and P.B. Dyson, "Computer-Aided Systems and
Software Engineering Products for Time-Critical Applications Development," Software
Productivity Solutions (SPS), Inc., April 1988.

[Stuebing 1988] H.G. Stuebing, "Evaluation of Computer Aided Systems/Software
Engineering Products for Time-Critical Naval Systems," Proceedings of the Conference
Methodologies and Tools for Real Time Systems, November 14-15, 1988.

Host/OS: Various Workstations: PC/AT, Apollo, Sun, VAXStation

I Vendors/Agents: [SPS]

Method: Structured Experiment

I
1 9-5

E&V Guidebook, Version 2.0

Inputs: Evaluation criteria and questions, sample problem definition, and candidate
methods and tools

Process: For each candidate method/tool, carry out development of software re-
qui gment specification and top-level design documents. Answer evaluation
questions and fill out scoring sheets.

Outputs: Evaluation repots containing two levels of detail: executive summaries
with top-level scoring and detailed descriptions and analyses with questions,
answers, and individual scores.

9-6

E&V Guidebook, Version 2.0

9.5 TIME-CRITICAL APPLICATIONS SUPPORT CHECKLIST

Purpose: Evaluation of the completeness of time-critical applications support by developing
a list of functional capabilities.

[@RM: Systems Requirements 7.1.6.1, @RM: Completeness 6.4.9;
@RM: Software Requirements 7.1.6.2, @RM: Completeness 6.4.9;
@RM: Preliminary Design 7.1.6.4, @RM: Completeness 6.4.9;
@RM: Detailed Design 7.1.6.5, @RM: Completeness 6.4.9]

Primary References:

Vendors/Agents: [E&V Team]

Method: Checklist.

Inputs: Capabilities checklist (see Table 9.5-1) and time-critical applications sup-
port documentation.

Process: Check off capabilities demonstrated by the time-critical applications sup-
port or discussed in the documentation.

Outputs: A list of capabilities provided by the time-critical applications support.

Table 9.5-1 Time-critical Applications Support Checklist

FEATURE FOUND

Periodic and aperiodic events
Synchronization of sequential and concurrent processes
Execution sequence of components
Timing constraints for events, sequences of events, processes, and

sequences of processes
Precision of a system's response to internal and external events
Interrupts and the extent of process context switching
Processing of discrete and time continuous data
Allocation of critical timelines and resource utilizations
Data throughput
Task priority changes due to system mode changes or failures
Task management (time-slicing, run-to-completion)
Graphical time-line depiction for tasks, showing dependencies and

concurrencies
Simulations for the host
Dynamic analysis for the target

9-7

E&V Guidebook, Version 2.0

10. CONFIGURATION MANAGEMENT SUPPORT ASSESSORS

These assessors examine the performance, usability, and completeness of the

APSE or APSE component functionality related to controlling the contents of software systems.

This includes monitoring the status, preserving the integrity of released and developing versions,

and controlling the effects of changes throughout the lifetime of the software system.

10.1 CONFIGURATION MANAGEMENT CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness of configuration management by developing a list
of functional capabilities.

[@RM: Configuration Management 7.2.2.7, @RM: Completeness 6.4.9]

Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

[Classification SchemaiE&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 10.1-1) and configuration management docu-
mentation.

Process: Check off capabilities demonstrated by the configuration manager or dis-
cussed in the documentation.

Outputs: A list of capabilities provided by the configuration manager.

10-1

E&V Guidebook, Version 2.0

Table 10.1-1 Configuration Management Capabilities Checklist

FEATURE FOUND

Version Management
Archive
Protect

Revision Management
Support for Multiple Development Paths

Audit Support
Configuration Library

Create
Delete
Verify

Library Elements
Create
Delete
Fetch
Reserve
Unreserve
Replace
Differences

Element Classes
Create
Delete
Insert Element
Remove Element

Listings
Elements
Reservation
History
Annotation
Completeness

Level Control
Usage Administration
Test Control

Procedures
Data
Results
Failure Reporting

Activity Tracking
Integration with Development Environment

10-2

E&V Guidebook, Version 2.0

10.2 SEI CONFIGURATION MANAGEMENT EXPERIMENT

Purpose: Evaluation of the configuration management and version control capabilities of an
environment. An experiment was designed to simulate the system integration and test-
ing phase of the life cycle by having three separate development lines of descent from
a single baseline.

[@RM: Configuration Management 7.2.2.7, @RM: Power 6.4.21;
@RM: Processing Effectiveness 6.4.22]

Primary References:
[Weiderman 1987] N. Weiderman and N. Haberman, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987,
Chapter 3, DTIC Number AD A180 905.

[Weiderman: Evaluation of Ada Environments, 4.13]

Host/OS: VAX/VMS and VAX/UNIX

Vendors/Agents: [SEll

Method: Structured experiment.

Inputs: The "generic" experiment description, an APSE, and host computer.

Process: "Instantiate" the experiment for a specific Host/OS/APSE combination and
carry it out.

Outputs: A filled-in checklist showing functional elements present and missing, a table
of elapsed-time values for certain specific operations, and subjective judgments
based on the experience.

10-3

E&V Guidebook, Version 2.0

10.3 CONFIGURATION MANAGEMENT ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of configuration management
shown in Fig. 10.3-1. Requirements for each element in the hierarchy are listed for cer-
tain attributes. Each requirement is augmented by one or more questions which ad-
dress the requirement.

[@RM: Configuration Management 7.2.2.7, @RM: Attributes 6.]

Primary References:
[E&V Report 1984] "Requirements for Evaluation and Validation of Ada Programming
Support Environments, Version 1.0," 17 October 1984, Appendix B of "Evaluation and
Validation (E&V) Team Public Report," Air Force Wright Aeronautical Laboratories,
November 1984, pp. B-86 - B-91, DTIC Number AD A153 609.

[Requirements for E&V: 4.5]

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire and configuration management documentation.

Process: Answer questions based on documentation, using the configuration manag-
er, or asking the vendor.

Outputs: Completed questionnaire.

Configuration Management
Identification

Attribute management
Version management
Variation management
Relationship management

Configuration Control
Workspace partitioning
Access control
Baseline management
Protection

Status Accounting and Reporting
History reporting
Configuration reporting

Figure 10.3-1 Configuration Management Hierarchy

10-4

J E&V Guidebook, Version 2.0

11. DISTRIBUTED SYSTEMS DEVELOPMENT AND
RUNTIME SUPPORT ASSESSORS

These assessors examine the ability of the APSE or APSE components to support
software development for distributed processing systems, and to provide runtime support for dis-
rbuted processing systems.

11-1

I
E&V Guidebook, Version 2.0

II12. DISTRIBUTED APSE ASSESSORS

These assessors examine the ability of two or more distributed APSEs to communi-
cate in cooperative ways in supporting the development of mission critical software at diverse

geographical locations.

II
I

12-1

E&V Guidebook, Version 2.0

12.1 DISTRIBUTED APSE QUESTIONNAIRE

Purpose: Evaluation of the APSE's ability to be used in a distributed environment.
[@RM: Whole APSE Assessment Issues 3.; @RM: Commonality 6.4.7;
@RM: Consistency 6.4.10; Functional Overlap 6.4.14;
@RM: Operability 6.4.20; @RM: Required Configuration 6.4.26;
@RM: System Compatibility 6.4.34]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 12.1-1) and APSE documentation.

Process: Answer questions based on documentation, using the APSE, or asking the
vendor.

Outputs: Completed questionnaire.

Host Transparency
Is the functionality of the APSE the same across all nodes?

Heterogenous/Homogenous
Does the APSE support a heterogenous hardware configuration or is it restricted to
implementation on a homogenous hardware configuration?
- Is there special hardware required for its implementation on a heterogenous

configuration?
- Are there special software communication protocols that are required for imple-

mentation on a heterogenous configuration?

Data Availability
Are all APSE data available to all APSE nodes or tools?

Common User Interface
Can the user access and use the APSE from any node without retraining or using a
different set of commands?

Figure 12.1-1 Distributed APSE Questionnaire

12-2

I
E&V Guidebook, Version 2.0

I

I 13. "WHOLE APSE" ASSESSORS

I
These assessors examine or measure the overall quality or performance of an

I APSE considered as a whole rather than as a collection of individual parts individually assessed.

A specific whole-APSE assessor may be designed to achieve a limited objective. An example of

I a limited objective is: evaluate the quality of an APSE in supporting a team of software develop-

ers performing a specific life cycle phase or activity such as preliminary design or integration

testing. The results of such an evaluation could then become one ingredient of an integrated

whole-APSE assessment (as described in Section 3.3), which has a broad objective.

I 13.1 APSE CHARACTERIZATION

3 Purpose: The purpose of this form is to provide an overview or summary of the capabili-
ties and features of an APSE. This form can be used as an initial information gathering
device to begin the process of whole-APSE assessment. This information would then
be supplemented by results of detailed evaluations or examinations of attributes that are
of specific interest to the potential buyer or user of an APSE.

[@RM: Whole APSE Assessment Issues 3., @RM: Capacity 6.4.6; @RM: Complete-
ness 6.4.9; @RM: Cost 6.4.11; @RM: Maturity 6.4.18; @RM: Operability 6.4.20;
@RM: Power 6.4.21; @RM: Required Configuration 6.4.26]

5 Primary References:

Vendors/Agents: [E&V Team]

* Method: Questionnaire

Inputs: Blank APSE characterization form (see Fig. 13.1-1) and APSE documentation.

Process:
1. Complete the APSE characterization form
2. Select APSEs for further investigation based on information gathered

* from step 1.

Outputs: Completed APSE characterization form.

I
i 13-1

E&V Guidebook, Version 2.0

Name/Acronym:

Vendor:

Address:

Phone Number:

Cost ($, no charge, not available/applicable):

Purchase Seminars

Maintenance In House Classes

Documentation Educational Videos

On-Line Help On-Line Tutorials

Hot-Line Support

Problem Reporting/Resolution Procedures:

Frequency of Updates:

Usage Limitations (License Restrictions):

Host/Target(s) - Required Configurations:

Peripherals Supported:

Languages Supported & Interoperability Features:

Summary of Features:

Life Cycle Support - Capabilities/Major Activity:

Methodology Support:

Management Support:

Application-Specific Capabilities:

Documentation Support (editors, word processors, document generators, desktop publishing):

Figure 13.1-1 APSE Characterization Form

13-2

U
E&V Guidebook, Version 2.0

I
File/Database/Program Library Management (hierarchical, relational):

U Access Control - Level of Granularity:

I Integration Mechanism (standard file structures, database, standard intertool interfaces):

User Interface (command language, menus, icons) - Flexibility vs. Consistency:

* Extensibility:

Support for Distributed Development:

Capacity (number of users, size of project):

U Typical Usage Scenarios (expertise of users, roles):

I
Developer:I

3 Production Process/Vehicles:

Date First Released:

Previous Use:U
3 References (documentation, evaluation results, case histories):

I
Figure 13.1-1 APSE Characterization Form (Continued)

1
i 13-3

E&V Guidebook, Version 2.0

13.2 Ada-EUROPE Ada ENVIRONMENT QUESTIONNAIRES

Purpose: The Ada-Europe Environment Working Group, under the chairmanship of John
Nissen, produced a guide which adopts the "point of view of a potential user wishing
to select an environment, and provides lists of questions to be asked about the environ-
ment under consideration." It generally follows the structure proposed in Stoneman
[@DoD 1980]; it "starts from the inside of the onion structure and works outwards."
Each of its 19 chapters follows a standard format. Topics are introduced and dis-
cussed, typically using one or two pages of text, and then a list of appropriate ques-
tions is provided.

[@RM: Whole APSE Assessment Issues 3., @RM: Augmentability 6.4.4;
@RM: Capacity 6.4.6: @RM: Commonality 6.4.7; @RM: Completeness 6.4.9;
@RM: Operability 6.4.20; @RM: Power 6.4.21; @RM: Processing Effectiveness 6.4.22;
@RM: Proprietary Rights 6.4.23; @RM: Required Configuration 6.4.26;
@RM: System Availability 6.4.32; @RM: Training 6.4.36]

Primary References:
[Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D. Nissen,
Ada-Europe Working Group, Cambridge University Press, 1986.
(Ada-Europe: Selecting an Ada Environment: 4.9]

Vendors/Agents: [Cambridge University Press]

Method: Questionnaires

Inputs: Questionnaires (see Table 13.2-1), APSE, and APSE documentation.

Process: Answer the questions by using the APSE, reading the documentation, or
asking the vendor of the APSE.

Outputs: Completed questionnaires.

Table 13.2-1 Ada-Europe Environment Questionnaires

ATTRIBUTE RELEVANT SECTION(S) FROM LYONS BOOK

Augmentability 7.2, 7.4, 9.
Capacity 18.1
Commonality 8.
Completeness 4., 5., 7.1, 7.3, 9., 13.-17.
Operability 10.-12., 18.10-18.12
Power 10.3-10.6
Processing Effectiveness 18.2-18.19
Proprietary Rights 19.
Required Configuration 2., 3., 18.2, 18.3
System Accessibility 6.
Training 10.2

13-4

I
E&V Guidebook, Version 2.0

I 13.3 CROSS DEVELOPMENT SYSTEM SUPPORT QUESTIONNAIRE

I Purpose: Evaluation of the APSE's ability to support the development of an application on
a host computer for implementation on a different target computer, where the target
computer is usually incapable of compiling, linking, and debugging software.

[@RM: Whole APSE Assessment Issues 3.,
@RM: Assembling 7.1.6.6, @RM: Completeness 6.4.9;
@RM: Compilation 7.1.6.7, @RM: Completeness 6.4.9;
@RM: Linking/Loading 7.1.6.13, @RM: Completeness 6.4.9;
@RM: Simulation and Modeling 7.3.2.3, @RM: Completeness 6.4.9;
@RM: Debugging 7.3.2.5, @RM: Completeness 6.4.9;
@RM: Emulation 7.3.2.13, @RM: Completeness 6.4.9;
@RM: Timing Analysis 7.3.2.14, @RM: Completeness 6.4.9]

Primary References:

I Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 13.3-1) and APSE documentation.

Process: Answer questions based on documentation, using the tools, or asking the
vendor.

Outputs: Completed questionnaire.
I Transformation

Are there target-optimizing cross-assemblers?
Does the front end support multiple code generators?
What language features are supported by the code generator?
Where are the pragmas defined?
- Are they all defined and understood by the front end?
- Are they all defined in the front end, but some are understood in the front end and some

are understood in the back end?
Does it provide the same pragma support across all code generators?
Are there conditional compilation capabilities?
What is the extent of the target features which are supported:
- 1750A (timer a, timer b, extended memory, etc.)
- 68020 (whatever particular features are identified by this chip)
- 80960 (whatever particular features are identified by this chip)
Is there an intelligent, modifiable linker?

Analysis
Is there a host-based target emulator, simulator, and symbolic debugger?
Is there a facility for sLoporting interoperability (communcations paths) between simulated target

processors for inp ;rget debugging?
Does the host developn'ent system have visibility into actual target processor hardware during

execution?
- If so, is such visibility in terms of original source code names?

If so, is such visibility extendable into multiple targets?
Is there a host-based static target timing analysis capability?

Figure 13.3-1 Cross Development System Support Questionnaire

13-5

E&V Guidebook, Version 2.0

13.4 APSE CUSTOMIZATION QUESTIONNAIRE

Purpose: Evaluation of the APSE's ability to be customized for a particular host and target
environment, methodology, or application domain.

[@RM: Whole APSE Assessment Issues 3.,
@RM: Predefined and User-Defined Forms 7.1.2.3;
@RM: Database Management 7.2.1.1; @RM: Documentation Management 7.2.1.2;
@RM: Configuration Management 7.2.2.7; @RM: Runtime Environment 7.2.3.5;
@RM: Application Independence 6.4.3; @RM: Commonality 6.4.7;
@RM: Distributeness 6.4.12; @RM: Generality 6.4.16:
@RM: Modularity 6.4.19; @RM: Operability 6.4.20;
@RM: Rehostability 6.4.25; @RM: Required Configuration 6.4.26;
@RM: Retargetability 6.4.27; @RM: System Compatibility 6.4.34]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 13.4-1) and APSE documentation.

Process: Answer questions based on documentation, using the tools, or asking the
vendor.

Outputs: Completed questionnaire.

13-6

E&V Guidebook, Version 2.0

Methodology
Can the user tailor the methodology supported to fit his own needs, such as for rapid prototyping

or partial life cycle completion?
Can the user define his own methodology?

Automation
is there development automation present in the APSE?
- if so, can It be modified to reflect:

- different project management organization?
- different life cycle definition (standard or user-defined)?
- different document standards generation?
- different project-specific configuration management?

Documentation
Is there documentation support for:
- user-defined document formats?
- customer-defined document formats?
Can the configuration management for documentation be altered?
Does the APSE support the planning, design, generation, baseline, and maintenance of documents?
Is the information created by the APSE directly importable Into the documents?
Can information from one document be transferred to another?
Are changes to the system automatically reflected In the system documentation?
Does the APSE support merged text and graphics documentation?
Is the documentation resident in one database or Is It derived from multiple databases?
Is the documentation exportable to another APSE or another database?

User Role Change
Can the APSE be modified to support a user In:
- a different skill level?
- a different job assignment?

Communication
What communication protocols are supported by the APSE?
- Can they be modified?
- Can they be user-defined?
- Is special hardware required to support this communication?

Distribution
Can the APSE go from a single host to support multiplr, nomogenous hosts? Heterogenous hosts?
Can the APSE go from an homogenous to an heterogenous environment and vice v-rsa?

Host Dependencies
Can the APSE be modified for use on another host?
Is the APSE built on top of a portability interface implementation such as the CAIS?

Target Dependencies
Does the APSE support one target?
- Can it be modified?
- Can other targets be supported?
Can multiple targets be supported at one time or only one target?
Does the APSE support real-time embedded or non real-time, embedded targets only?

Runtime Support System
Can the RTS be modified?
Are there standard modifications (versions) provided?
Does it have a modular construction
Is the design docuinentation for It provided?
- Is it easily understood?
Is the associated toolset (linker, loader, compiler) modifiable to support the modifications of the RTS?
Is the RTS source code provided?
Does the RTS support multiple targets?

Figure 13.4-1 APSE Customization Questionnaire

13-7

E&V Guidebook, Version 2.0

14. ADAPTATION ASSESSORS

n These assessors examine the ease with which an APSE or APSE component can

be used beyond its original requirements, such as extending or expanding capabilities and
adapting for use in another application or environment. This is measured as the degree to which

this adaptation can be accomplished without reprogramming.I
I 14.1 HOST AND TARGET QUESTIONNAIRE

Purpose: Evaluation of tools relative to host and target configurations.
[@RM: Rehostability 6.4.25;
@RM: Retargetability 6.4.27]

Primary References:
[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al., "Guidelines for Ada Compiler
Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W. Rogers, Cambridge University Press, 1984.3 (Nissen, et al.: Guidelines For Ada Compiler Specification And Selection: 4.19]

Vendors/Agents: (Cambridge University Press]

m Method: Questionnaire

Inputs: Questionnaire and tool documentation.

3 Process: Fill in the appropriate answers in the following questionnaire.

a) Host configuration(s) required

m b) Host operating system(s) required

c) Target configuration(s) supported

3 d) Target operating system(s) supported

e) APSE(s) supported, if applicable

m f) Host-target communication supported

i) program loading
3 ii) program execution and debugging.

Outputs: A completed list which characterizes the tool relative to host-target issues.

14-1

E&V Guidebook, Version 2.0

14.2 MACHINE-SPECIFIC CHARACTERISTICS QUESTIONNAIRE

Purpose: Evaluation of tools relative to machine-specific characteristics.
[@RM: Rehostability 6.4.25;
@RM: Retargetability 6.4.27]

Primary References:
[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al., "Guidelines for Ada Compiler
Specification and Selection," in Ada: Language, Compilers and Bibliography, ed.
M.W. Rogers, Cambridge University Press, 1984.

[Nissen, et al.: Guidelines For Ada Compiler Specification And Selection: 4.19]

Vendors/Agents: (Cambridge University Press]

Method: Questionnaire

Inputs: Questionnaire and tool documentation.

Process: Fill in the appropriate answers in the following questionnaire.

[@DoD 1983: Lexical Elements 2.]

* [@DoD 1983: 2.1] Character set of the host and target

* [@DoD 1983: 2.2] Maximum number of characters on a line
of the host and target

* (@DoD 1983: 2.3, 2.4] Is the maximum character length of
an identifier or numerical literal restricted other than by line
length

" [@DoD 1983: 2.8, F.] The form, allowed place, and effect
of every implementation-defined pragma

[@DoD 1983: Declarations and Types 3.]
* [@DoD 1983: 3.2.1] The effect of using uninitialized vari-

ables - does the compiler flag or reject program that de-
pends upon such variables

" (@DoD 1983: 3.5.1] The maximum number of elements in
an enumeration type

* [@DoD 1983: 3.5.4] The values of:
-- INTEGER'FIRST

-- SHORTINTEGER'FIRST

-- LONGINTEGER'FIRST
-- INTEGER'LAST

14-2

I
E&V Guidebook, Version 2.0

I_
-- SHORTINTEGER'LAST3 -- LONGINTEGER'LAST

* [@DoD 1983: 3.5.8] The values of:

- FLOAT' DIGITS

-- SHORTFLOAT'DIGITS
-- LONGFLOAT'DIGITS

[@DoD 1983: Names and Expressions 4.]
i [@DoD 1983: 4.10] Is there a limit on the range of universal

values which exceeds the capacity of the compiler
" [@DoD 1983: 4.10] Is there a limit on the accuracy real uni-

versal expressions

[@DoD 1983: Tasks 9.]

3 * [@DoD 1983: 9.6] The values of:

-- DURATION' DELTA
-- DURATION'SMALL

-- DURATION'FIRST

-- m DURATION'LAST
[@DoD 1983: 9.8] The values of:
-- PRIORITY'FIRST3 -- PRIORITY'LAST

[@DoD 1983: 9.11] The restrictions on shared variables

I [@DoD 1983: Program Structure and Compilation Issues 10.]
" [@DoD 1983: 10.1] Initiation, communication with, and re-3 strictions on the main program

* [@DoD 1983: 10.5] When tasks initiated in imported library
units will terminate

I [@DoD 1983: Exceptions 11.]
* [@DoD 1983: 11.1] Conditions under which these exceptions3 are raised:

-- NUMERICERROR
-- PROGRAMERROR

-- STORAGEERROR

3 14-3

E&V Guidebook, Version 2.0

[@DoD 1983: Representation Clauses and Implementation-Dependent
Features 13.]

* [@DoD 1983: 13.4, F.] The list of all restrictions on repre-
sentation clauses

* [@DoD 1983: 13.1, F.] The conventions used for any sys-
tem generated name denoting system dependent components

* [@DoD 1983: 13.5, F.] The interpretation of expressions that
appear in address clauses, including those for interrupts

* [@DoD 1983: 13.7] The specification of package SYSTEM;
which includes the values of:

-- MININT

-- MAXINT
-- MAX DIGITS

-- MAXMANTISSA

-- FINEDELTA

-- TICK

[@DoD 1983: 13.7.3] For a pre-defined floating point type F, the value

of:
F'MACHINEROUNDS

F'MACHINERADIX

F'MACHINEMANTISSA

F'MACHINEEMAX

F'MACHINEEMIN

F'MACHINEOVERFLOWS

* [@DoD 1983: 13.7.3] The values outside the range of safe
numbers for real types

* [@DoD 1983: 13.10.1] Any restriction on UN-
CHECKEDDEALLOCATION

* [@DoD 1983: 13.10.2, F.] Any restriction on UN-
CHECKEDCONVERSION

[@DoD 1983: Input-Output 14]

* [@DoD 1983: 14., F.] Any implementation-dependent
characteristics of the input-output packages

14-4

E&V Guidebook, Version 2.0

* [@DoD 1983: Implementation-Dependent Features F.]

-- [@DoD 1983: F.] The name and type of every implementa-
tion-dependent attribute

Outputs: A completed list which characterizes the tool relative to machine
dependencies.

14-5

I
E&V Guidebook, Version 2.0I

I
I 15. INFORMATION MANAGEMENT SUPPORT ASSESSORS

These assessors examine the performance, usability, and completeness of the
APSE or APSE component functionality related to controlling the information flow during the de-
velopment of a software system. This includes the organization, accession, modification, dis-
semination, and processing of any associated information.

I 15.1 FILE MANAGEMENT CHECKLIST

Purpose: Evaluation of the completeness and power of file management 5y developing a
I list of functional capabilities.

[@RM: File Management 7.2.1.3, @RM: Completeness 6.4.9; @RM: Power 6.4.21]

Primary References:
[Peterson 1985] J.L. Peterson and A. Silberschatz, "Operating System Concepts," 2nd
edition, Addison-Wesley, 1985.

I Vendors/Agents: [E&V Team]

i Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 15.1-1) and file manager documentation.

Process: Check off capabilities demonstrated by the file manager or discussed in
the documentation.

Outputs: A list of capabilities provided by the file manager.

II
I
I

15-1I

E&V Guidebook, Version 2.0

Table 15.1-1 File Management Capabilities Checklist

FEATURE FOUND

Operations
Create
Read
Write
Delete
Rewind
Append
Copy
Rename
Update
Compress
Expand
Compare

Directories
Operations

Search
Create Directory
Delete Directory
Rename Directory
List Directory
Backup
Restore

Structure
Single-Level (Flat)
Two-Level
Tree-Structured (Hierarchical)
Acyclic Graph
General Graph

Storage
Format

Record Types
Fixed Length
Variable Length

Byte Count at Beginning
End of Record Marker

Blocked Records
Spanned Records
Polymorphic Records

Data
Text

ASCII
EBCDIC

Numbers
Integers

Signed Magnitude
I's Complement
2's Complement

Floating Point
IEEE Format

Persistent Knowledge of Ada Types
Media

Disk
Drum
Magnetic Tape
Other

Multi-Volume Files

15-2

I
E&V Guidebook, Version 2.0

Table 15.1-1 File Management Capabilities Checklist (Continued)

I FEATURE FOUND

Allocation Method
Contiguous
Linked
Indexed

Access Management
Sequential FileDirect (Random) Access FilePrimary Indexing

Secondary Indexing
Hash-Coded Indexing

Access Security Protection
Dynamic Protection Structure
Data Encryption
File Password

Static
Dynamic
Multiple

Access Control
Controlled OperationsRead

Write
Execute
Append
Delete

Access Matrix
Global Table
Access List
Capability List
Lock/Key

I
I
I
I
I
I
I

i 15-3

E&V Guidebook, Version 2.0

15.2 DATABASE MANAGEMENT CHECKLIST

Purpose: Evaluation of the completeness and power of database management by develop-
ing a list of functional capabilities.

[@RM: Database (Object) Management 7.2.1.1; @RM: Completeness 6.4.9;
@RM: Power 6.4.21]

Primary References: [Martin 1986] D. Martin, "Advanced Database Techniques," MIT
Press, 1986.

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 15.2-1) and database manager documenta-
tion.

Process: Check off capabilities demonstrated by the database manager or discussed
in the documentation.

Outputs: A list of capabilities provided by the database manager.

15-4

I
E&V Guidebook, Version 2.0

I Table 15.2-1 Database Management Capabilities Checklist

I FEATURE FOUND

Model
Hierarchical
Network
Relational
Post-Relational
Object-Oriented

Data Dictionary Management
Definitions

Files, Tables.1 Fields, Attributes
Relationships

Subschemas
Views

Single-Level
Multilevel

Objects, Entities
Data Types

Subtypes
User-Defined Types

Operations
Implementation Parameters
Nondatabase Entities

Listing Descriptions
Cross-Referencing Descriptions
Dictionary History
Automatic Generation of Data Definition Statements

Data Queries
Nonprocedural Language (4GL)
Fill-in-the-Form
Query by Example

Report Generation
Query
Data Set
User-Defined

Update Mode
Static
Dynamic

Access Security Protection
Access Control

By View
By File, Table
By Object, Entity
By Relationship
By Operation (Read, Write, Append)

Data Encryption
Dynamic Password

Keyword Input Protection
Protection of Stored and Transmitted Data

Referential Integrity

1
i 15-5

E&V Guidebook, Version 2.0

Table 15.2-1 Database Management Capabilities Checklist (Continued)

FEATURE FOUND

Access Conflict and Deadlock Protection
Access Locking
Dynamic Backout from Deadlock
Undoing Multiple Transactions

Storage
Full-Length
Representation with Codes
Data Packing

Disk Space Management
Multivolume Files
Areas
File Groups

File Access Management
Sequential File
Direct (Random) Access File
Primary Indexing
Secondary Indexing
Hashing
Hash-Coded Index
Database-Key
Bit-Vector Inverted File (Bit-Index)

File Linking
One-to-One Relationship
One-to-Many Relationship
Many-to-Many Relationship

Application Program Interface
Application Development Language Interface
Standard DBMS Operations
Insertion (Record Creation or Addition)
Modification (Field Update)
Deletion
Link Creation and Suppression
Screen Generators

Program/Data Independence through Mapping
Program/Structure Independence Using Multilevel Views
Backup and Recovery

Transaction Logging
Cold Restart
Warm Restart

Data Restructuring Capabilities (Views)
Administration Capabilities

Interactive
Dictionary Management
Access Permission Management
Data Quality Verification

Communication Capabilities
Import, Bulk Data Loading
Export, Flat File Conversion
Single System Access
Multiple System Access
Distributed Database

Performance Monitoring/Tuning
Miscellaneous

Terminal Independent
On-Line Help Facility

15-6

E&V Guidebook, Version 2.0

15.3 ELECTRONIC MAIL CHECKLIST

Purpose: Evaluation of the completeness and power of electronic mail by developing a list
of functional capabilities.

[@RM: Electronic Mail 7.2.1.4; @RM: Completeness 6.4.9; @RM: Power 6.4.21]

Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.

[Classification Schema/E&V Taxonomy Checklists: 4.4]

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 15.3-1) and mail system documentation.

Process: Check off capabilities demonstrated by the mail system or discussed in the
documentation.

Outputs: A list of capabilities provided by the mail system.

Table 15.3-1 Electronic Mail Capabilities Checklist

FEATURE FOUND

Send
Receive
Send Registered Mail
Immediate Forwarding
Immediate Reply
Archive
Print
Search For String
Edit Message To Be Sent
Read Next Message
Read Previous Message
Read First Message
Read Last Message
Position To Start Of Message
Keypad Support

On-Line Help Facility
Send To Distribution Lists
Send Across Network
Mail Filing
Configure The Mailbox
Programmatic Interface
Message Status

Incoming - Read/Unread
Outgoing - Sent/Unsent

15-7

I
i E&V Guidebook, Version 2.0

U
99. OTHER ASSESSORS

I
This chapter contains instances of E&V technology that do not conveniently fit

Uone of the earlier chapters. It is likely that in future versions of the Guidebook some of

these "miscellaneous" instances will be grouped together in new chapters, and therefore

I moved out of Chapter 99.

I 99.1 TEXT EDITING CAPABILITIES CHECKLIST

I Purpose: Evaluation of the completeness and power of text editing by developing a list of
functional capabilities.

[@RM: Text Editing 7.1.1.1: @RM: Completeness 6.4.9: @RM: Power 6.4.211

3 Primary References:
[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version
1.0, 15 June 1987.I[Classification Schema/E&V Taxonomy Checklists: 4.4

Vendors/Agents: [E&V Team]

Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.1-1) and text editor documentation.

I Process: Check off capabilities demonstrated during editing sessions or di:,ussed in
the documentation.

3Outputs: A list of capabilities provided by the text editor.

9
I
I
I

i 99-1

E&V Guidebook, Version 2.0

Table 99.1-1 Text Editing Capabilities Checklist

FEATURE FOUND

Locator Movement
Left, Right, Up, Down
Top, Bottom of File
Next/Previous Word
Beginning, End of Line
Beginning, End of Page (Screen)
Scroll Up, Down, Left, Right
Page Up, Down, Left, Right

Search/Replace
Search Forward, Backward
Regular Expression Search, Replace
Multiple Replace

Buffers
Copy Text To, From
Edit Multiple Files
Split Screen

Regions
Set Mark
Insert Region
Delete Region
Copy Region
Move Region
Hide, Show Region

File Manipulation
Copy From File
Append To File

Macros
Keyboard Macros
Macro Language

File Storage
Save (Continue Editing)
Quit (No Save)
Automatic Save
Versioning (Backup Original, Save Changes Only)
Baselining

Miscellaneous
Terminal Independent
On-Line Help Facility
Minimal Redisplay Algorithm (Refresh)
Key Redefinition
Undo Command
Command Recall, Redo
Command Type-Ahead
Session Logging
Spawn Command Language Process

99-2

I
E&V Guidebook, Version 2.0

I 99.2 LANGUAGE-SENSITIVE EDITING CAPABILITIES CHECKLIST

Purpose: Evaluation of the completeness and power of language-sensitive editing by devel-
oping a list of functional capabilities. This list deals only with those features that pro-
vide the language-sensitivity to the editor. For a list of features supporting general text
editing see the Text Editing Capabilities Checklist [99.1]. This list may be used to eval-
uate editors which are sensitive to languages such as Ada or FORTRAN as well as
word processors which may be viewed as editors which are sensitive to the English lan-
guage.

[@RM: Text Editing 7.1.1.1, @RM: Completeness 6.4.9, @RM: Power 6.4.21;
@RM: Syntax and Semantics Checking 7.3.1.15]

i Primary References:

Vendors/Agents: [E&V Team]

I Method: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.2-1) and text editor documentation.

3 Process: Check off capabilities demonstrated during editing sessions or discussed in
the documentation.

*Outputs: A list of capabilities provided by the text editor.

9
I
I
I
I
I
I

I
1 99-3

E&V Guidebook, Version 2.0

Table 99.2-1 Language-Sensitive Editing Capabilities Checklist

FEATURE FOUND

Locator Movement
Next, Previous Word (Identifier, Keyword)
Beginning, End of Sentence (Statement, Comment)
Beginning, End of Paragraph (Block)
Beginning, End of Section (Unit)
Beginning, End of Document (Compilation)

Search/Replace
Word - Where Used, Where Defined
Sentence
Paragraph
Template
Stub
Section

Regions
Define Region - Word, Sentence, Paragraph, Template,

Stub, Section
Insert Region
Delete Region
Copy Region
Move Region
Hide, Show Region
Comment Out Region

Display
High-Level Structure
Unclosed Structures
Matching Structures
Permitted Constructs
Words of Permitted Type

Miscellaneous
(User-Defined) Reformat
On-Line LRM Access
Support for Mixed Languages
Analyze Change - Section, Document
Check Spelling
Check Grammar (Syntax)
Check Meaning (Semantics)
Translate (Compile) - Sentence, Paragraph, Section
Knowledge-based versus Template-based
Traceability between Objects

99-4

E&V Guidebook, Version 2.0

n 99.3 PERFORMANCE MONITORING CHECKLIST

Purpose: Evaluation of the completeness of performance monitoring by developing a list of
functional capabilities.

[@RM: Performance Monitoring 7.2.1.10, @RM: Completeness 6.4.9]

3 Primary References:

Vendors/Agents: [E&V Team]

IMethod: Capabilities checklist

Inputs: Capabilities checklist (see Table 99.3-1) and performance monitor3 documentation.

Process: Check off capabilities demonstrated by the performance monitor or dis-
cussed in the documentation.

Outputs: A list of capabilities provided by the performance monitor.

I
i

Table 99.3-1 Performance Monitor Capabilities Checklist
I FEATURE FOUND

i Hardware
CPU Time (Real And Virtual)
Memory Usage
I/O Channel Traffic
Terminal Response
Terminal Connect Time
Terminal Availability
Disk Usage
Disk Space Availability
Tape Mounts
Tape Drive Availability
Printout Quantity

Software
Tool Usage
Program Library Monitoring
Wall Clock Time

£ 99-5

E&V Guidebook, Version 2.0

99.4 COMMAND LANGUAGE INTERPRETER ASSESSMENT QUESTIONNAIRE

Purpose: The document presents a hierarchical breakdown of the command language in-
terpreter shown in Fig. 99.4-1. Requirements for each element in the hierarchy are
listed for addressing certain attributes. Each requirement is augmented by one or more
questions which address the requirement.

[@RM: Command Language Processing 7.2.3.1, @RM: Attributes 6.]

Primary References:
[E&V Report 1984] "Requirements for Evaluation and Validation of Ada Programming
Support Environments, Version 1.0," 17 October 1984, Appendix B of "Evaluation and
Validation (E&V) Team Public Report," Air Force Wright Aeronautical Laboratories,
November 1984, pp. B-39 - B-44, DTIC Number AD A153 609.

(Requirements for E&V: 4.5]

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire, command language interpreter, and documentation.

Process: Answer the questions by using the command language interpreter, reading
the documentation, or asking the vendor of the command language interpreter.

Outputs: Completed questionnaire.

Command language interpreter
Command language

Syntax
Programs
Tool/program invoking function
Diagnostic generation function
Non-tabular inputs

Interpreter
Hosts
Interfaces
Aids
Performance

Figure 99.4-1 Command/Language Interpreter Hierarchy

99-6

E&V Guidebook, Version 2.0

i 99.5 RADC SOFTWARE QUALITY METRIC WORKSHEETS

Purpose: "The purpose of this guidebook is to provide a comprehensive set of procedures
and techniques to enable data collection personnel to apply quality metrics to software
products and to evaluate the achieved quality levels." The focus of the RADC report is
planning and designing quality into application software throughout the software life
cycle. However, many of the questions on the worksheets are equally relevant to sys-
tems and support software and may be rephrased to address software that is already in
use as opposed to software under development.
[@RM: Attributes 6.]

Primary References: [RADC 1985] T.P. Bowen, G.B. Wigle, and J.T. Tsai, "Specification
of Software Quality Attributes Software Quality Evaluation Guidebook," Rome Air Devel-
opment Center, Griffiss AFB, RADC-TR-85-37, Volume III (of three), February 1985,Appendix A, DTIC Number AD A153 990.

IVendors/Agents" [RADC]

i Method: Questionnaire/Worksheet

Inputs: Worksheet, tool, and tool documentation.

Process: Answer the questions by using the tool, reading the documentation, or ask-
ing the vendor of the tool.

Outputs: Completed worksheet.

iI
I
I

I
I
I
1 99-7

E&V Guidebook, Version 2.0

99.6 SEI ASSESSMENT OF SOFTWARE ENGINEERING TOOLS

Purpose: The guide provides and discusses a set of standard questions that a potential
user may ask about a tool, given that different users will interpret the answers in differ-
ent ways and attach different degrees of importance to them. The questions are
grouped according to the following aspects: 1) Ease of use, 2) Power, 3) Robustness,
4) Functionality, 5) Ease of insertion, and 6) Quality of commercial support. The first
four sections are mainly of concern to the actual user of the tool; the last two are of
concern to the management of the project that contemplates acquiring the tool.

[@RM: Anomaly Management 6.4.2, @RM: Augmentability 6.4.4,
@RM: Capacity 6.4.6, @RM: Commonality 6.4.7, @RM: Completeness 6.4.9,
@RM: Consistency 6.4.10, @RM: Functional Overlap 6.4.14, @RM: Granularity 6.4.17,
@RM: Maturity 6.4.18, @RM: Operability 6.4.20, @RM: Power 6.4.21,
@RM: Processing Effectiveness 6.4.22, @RM: Proprietary Rights 6.4.23,
@RM: Rehostability 6.4.25, @RM: Simplicity 6.4.29,
@RM: Storage Effectiveness 6.4.31, @RM: System Availability 6.4.32,
@RM: System Compatibility 6.4.34, @RM: Traceability 6.4.35,
@RM: Training 6.4.36, @RM: Visibility 6.4.38]

Primary References: (Firth 19871 R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, "A
Guide to the Classification and Assessment of Software Engineering Tools," Software
Engineering Institute, Technical Report, CMU/SEI-87-TR-10, August 1987, DTIC Number
AD A182 895.

Vendors/Agents: [SEI]

Method: Questionnaire

Inputs: Questionnaire, tool, and tool documentation.

Process: Answer the questions by using the tool, reading the documentation, or ask-
ing the vendor of the tool.

Outputs: Completed questionnaire.

99-8

E&V Guidebook, Version 2.0

U 99.7 VENDOR EVALUATION QUESTIONNAIRE

Purpose: The purpose of this questionnaire is to provide an overview of the characteristics
and policies of a vendor. The questionnaire appears in full in Section 4.8 of the refer-
e&ce cited below. In its current form it applies specifically to Ada compilation system
vendors, but most of the questions apply equally well to tool vendors in general.
Table 99.7-1 simply lists the titles of the 11 subdivisions of the questionnaire. The
questionnaire itself provides 2 to 15 questions under these titles.

[@RM: Cost 6.4.11, @RM: Document Accessibility 6.4.13, @RM: Maturity 6.4.18;
@RM: Proprietary Rights 6.4.23, @RM: Training 6.4.36]

Primary References:

[Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler Evaluation
and Selection, Version 1.0," Software Engineering Institute, CMU/SEI-89-TR-13,
March 1989, DTIC Number AD A207 717.

(Weiderman: Compiler Evaluation and Selection: 4.22]

I Vendors/Agents: [SEI]

Method: Questionnaire

Inputs: Blank characterization form and tool documentation.

Process: Gather data and fill in form.

Outputs: Completed vendor characterization form.

I
£ Table 99.7-1 Vendor Characterization Form Categories

Corporate structure
Corporate performance
Product lines
Corporate health
Tailoring policies
Support policies
Pricing policies
Runtime policies

I Runtime royalties
Source code
Contractual issues
References

£ 99-9

E&V Guidebook, Version 2.0

99.8 REQUIRED CONFIGURATION QUESTIONNAIRE

Purpose: Assess the required configuration for using a software product. The question-
naire covers the recommended as well as the required configuration since using a
product with the minimum required configuration may result in performance which is un-
acceptable to a user.

[@RM: Required Configuration 6.4.26]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 99.8-1) and the product documentation.

Process: Answer questions based on the documentation or by asking the product
vendor.

Outputs: Completed questionnaire which describes the resources required to run the
product.

Host System
What host computer(s) or chip(s) does the product run on?
What operating system(s) (including version and release) does the product run on?
- What is the minimum and recommended configuration of the operating system

(parameter settings)?

Main Memory
What is the minimum required RAM to run the product?
- What is the recommended RAM to run the product?
How do the RAM requirements change with the size of the input data file(s)?

Secondary Memory
How much space do the executable(s), object file(s), and runtime system take?
How much space do typical input data file(s) take?
- How does the space vary with the size of the input data file(s)?
How much space do typical output data file(s) take?
- How does the space vary with the size of the output data file(s)?

Peripherals (Disk, Monitor, Printers, Plotters, Mouse, etc.)
What are the required peripherals?
What are the recommended peripherals?

Other Software (APSE, CAIS, Runtime, DBMS, Window Manager, etc.)
What are the other required software products?
What are the other recommended software products?

Figure 99.8-1 Required Configuration Questionnaire

99-10

I
E&V Guidebook, Version 2.0

U 99.9 COST QUESTIONNAIRE

Purpose: Assess the costs of acquiring, running, and supporting a software product.
[@RM: Cost 6.4.11]

Primary References:

Vendors/Agents: [E&V Team]

3 Method: Questionnaire

Inputs: Questionnaire (see Fig. 99.9-1) and the product pricing information.

Process: Answer questions based on the pricing information or by asking the product
vendor.

Outputs: Completed questionnaire which describes the costs of acquiring, running,3 and supporting the product.

I
I
II

I
i
I
I
I
I
I

n 99-11z

E&V Guidebook, Version 2.0

Product
What is the single copy price?
Are there discounts for volume purchases?
- Does the entire quantity have to be purchased all at once or does the vendor track purchases by organization

and automatically apply the discount when the required volume has been reached?
What is the price of a site license?
What is the cost of leasing the product?
- Is the lease perpetual or fixed term?
- If fixed term, what are the renewal terms?
How does the cost depend on characteristics of the host machine?
- What are the costs to add more users or workstations?
- What are the costs to move to a different host machine?
Are there discounts for government organizations?
Are there discounts for academic institutions?
Can the product be returned during some specified period for a full refund?
If available, what Is the cost of purchasing the source code?

Maintenance
What is the one year maintenance cost?
- What does it provide in terms of:

- Support?
- Bug Fixes?
- Upgrades?
- Documentation Updates?

What happens in the event maintenance has been dropped?
What is the cost of hot line support?

- Is there an 800 number?
If there is an electronic bulletin board for problem reports and resolutions, what is the subscription fee?
What are the costs of making application-specific changes?

Training
What is the cost of:
- On-site training?
- Seminars?
- Video training courses?
- Computer based training?
- Users' group membership?
- Newsletter subscription?
- In-house consultants?
Are there training credits offered with the purchase of the product?
- How much are they worth?
- What can they be used for?
- How long are they good for?

Documentation
What Is the price of:
- Installation guide?
- Users' guide?
- Reference manual?
- Interface manual?
- Quick reference card?
- Keyboard template?

Miscellaneous
If the product requires the purchase of other hardware or software, what does that cost?
What is the cost of Installing the product?
What Is the cost of running the product?
- Cost per run or session?
- Runs or sessions per day, week, month, or year?
What is the cost of supporting the product?
- Cost of computer resources?
- Cost of operations or support personnel?

Figure 99.9-1 Cost Questionnaire

99-12

I
E&V Guidebook, Version 2.0

I 99.10 MATURITY QUESTIONNAIRE

Purpose: Assess the maturity of a software product.
(@RM: Maturity 6.4.18]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 99.10-1) and the product historical information.

Process: Answer questions based on the historical information or by asking the prod-
uct vendor.

Outputs: Completed questionnaire which describes the maturity of the product.

I
I
3 Product History

When was the product first released?
What is the current version and release?
What is the frequency of new versions and releases?
What are the procedures for testing new versions and releases?
- Alpha testing?S- Beta testing?

User Community
How many active users of the product?

Will the vendor supply references?
- What applications has the product been used on?
Is the vendor willing to share problem reports and resolutions with the users?
Is there a users' group?
- How often do they meet?

Product Evaluation
How has the product been rated in the literature?
Are there independent evaluations of the product available?

I Figure 99.10-1 Maturity Questionnaire

9
i 99-13

E&V Guidebook, Version 2.0

99.11 LICENSING ISSUES QUESTIONNAIRE

Purpose: Assess the licensing agreement for a software product.
[@RM: Proprietary Rights 6.4.23]

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 99.11-1) and the product licensing agreement.

Process: Answer questions based on the licensing agreement or by asking the prod-
uct supplier.

Outputs: Completed questionnaire which describes the licensing agreement for a
product.

99-14

I
E&V Guidebook, Version 2.0

I
What, specifically, is being purchased, leased, or otherwise acquired?

- Hardware?
- Software?
- Utilities?
- Documentation?
- If lease, is it perpetual or fixed term?

- If fixed term, what are the renewal terms?
Is any part of the product "free" or shareware?

- What are the restrictions and/or obligations in using the product?
What, specifically, is covered by patents, copyrights, trademarks, or agreements?

- Is any of the product copy protected?
- Can the user make backup copies for protection?
- Can the documentation be copied?

Are there limitations on the number of users or workstations using the product?
Can the product be moved to a different machine or does it have to stay on a specific

machine?
Is the source code available?

- If so, what are the licensing terms?
- If not, can it be put into escrow to protect the user in the event that the supplier

goes out of business?
- Who holds the rights to the user-modified source code?

- What is the effect on the maintenance agreement?
What is the supplier's obligation to correct deficiencies?
What is the supplier's obligation to maintain upward compatibility across new versions

or releases?
What is the supplier's obligation to provide interface information to the user?

- What is the supplier's obligation to maintain fixed syntax and semantics of the
product's interfaces?

What are the supplier's rights to:
- Runtime versions of the product (no development tools)?
- Objects generated by the product?
- What are the procedures to account for and collect the royalties?

What are the user's rights to the executables and/or source code in the event that:
- The supplier goes out of business?
- The supplier is bought out by another company?
- The supplier discontinues the product?
- The supplier issues a new version or release?

What obligations of the supplier to third parties are inherited by the user?3 What exceptional conditions and penalty clauses are in the agreement?

IFigure 99.11-1 Licensing Issues Questionnaire

I
I

i 99-15

E&V Guidebook, Version 2.0

99.12 SOFTWARE PRODUCTION VEHICLE(S) QUESTIONNAIRE

Purpose: Assess the software production vehicle(s) of a software product.
[@RM: Software Production Vehicle(s) 6.4.301

Primary References:

Vendors/Agents: [E&V Team]

Method: Questionnaire

Inputs: Questionnaire (see Fig. 99.12-1) and the product specification data.

Process: Answer questions based on the specifications or by asking the product
vendor.

Outputs: Completed questionnaire which describes the software production vehicle(s)
of the product.

99-16

I
E&V Guidebook, Version 2.0

I
Requirements/Design

What front end methodologies are used to develop the product?
What front end software tools are used to develop the product?

Coding
What source languages are used to implement the product?
- Are the versions based on standards?
Is the source code automatically generated from the front end tools?
- What code generator(s) are used?
What compiler (assembler, interpreter) version is used?
- What parameters are set during compilation?
What is the host computer and operating system (including models and versions)?
- Is the development platform the same as the product host?

- If not, what is the development computer and operating system?
What linker version is used?
-What parameters are set during linking?

Testing and Evaluation
What testing techniques are used?

I- Static analysis?
- Dynamic analysis:

- Structural coverage?
- Domain/Path coverage?
- Symbolic testing?
- Mutation analysis?
- Functional testing?
- Random testing?

What release testing procedures are used?
Alpha testing?
Beta testing?

What testing tools are used?

3 User Feedback
What mechanisms are there for collecting user feedback?
What mechanisms are there for evaluating user feedback?
What mechanisms are there for responding to user feedback?

Configuration Management
What procedures are there for managing the configuration of the product?
What tools are there for managing the configuration of the product?

Figure 99.12-1 Software Production Vehicle(s) Questionnaire

99-17

E&V Guidebook, Version 2.0

I

3 APPENDIX A

CITATIONSU
I EACEC 1986] "Ada Compiler Evaluation Capability (ACEC) Technical Operating Report

(TOR) Reader's Guide," Air Force Wright Aeronautical Laboratories, Document
Number D500-11790-2, 10 August 1988, DTIC Number AD B125 147.

I [ACVC 1989] Ada Compiler Validation Procedures, Version 2.0, AJPO, May 1989.

[ALS 1984] SofTech, "Ada Language System (ALS) Specification," CR-CP-0059-AOO,5 August 1984.

[ARTEWG 1987] "Catalogue of Ada Runtime Implementation Dependencies,"
Association for Computing Machinery, Special Interest Group on Ada,
Ada Runtime Environment Working Group, 1 December 1987.

(ARTEWG 1988] "A Framework for Describing Ada Runtime Environments," Proposed by
Ada Runtime Environment Working Group (SIGAda), Ada Letters, Volume VIII, Number
3, May/June 1988, pp. 51-68.

[Barnes 1985] Proceedings of te International Ada Conference, Paris, eds. J.G.P. Barnes
and G.A. Fisher, Jr, Cambridge University Press, 1985.

[Barstow 1981] D.R. Barstow and H.E. Shrobe, "Observations on Interactive Programming3 Environments," [@Wassermann 1981], pp. 286-301, 1981.

[Buxton 1980] [@DoD 1980].

I [CAIS] [@DoD 1986].

[CAiS-A] [@MIL 1989].

I [CIVC 19891 "CIVCl Implementor's Guide," Wright Research and
Development Center, CIVC-FINL-019, October 1989, in progress.

[DACS 1979] The DACS Glossary, A Bibliography of Software Engineering Terms,
October 1979.

U[DeMillo 1986] R.A. DeMillo, "Functional Capabilities of a Test and Evaluation
Subenvironment in an Advanced Software Engineering Environment," Georgia
Institute of Technology GIT-SERC-86/07, 20 October 1986.

I [DoD APSE Analysis 1984] [@E&V Report: DoD APSE Analysis Report C.]

A-1

E&V Guidebook, Version 2.0

[DoD 1977] DoD, "Requirements for High Order Computer Languages (IRONMAN), U.S.
Department of Defense, 1977, DTIC Number AD A100 403.

[DoD 1980] J.N. Buxton, "Requirements for Ada Programming Support Environments -
STONEMAN," U.S. Department of Defense, February 1980, DTIC Number AD A100
404.

[DoD 1982] "Software Development Methodologies and Ada (METHODMAN)," U.S. Depart-
ment of Defense, 1982.

[DoD 1983] ANSI/MIL-STD-1815A-1983, Reference Manual for the Ada Programming Lan-
guage, U.S. Department of Defense, 17 February 1983, DTIC Number AD A131 511.

[DoD 1986] DoD-STD-1838, Common APSE Interface Set (CAIS), U.S. Department of
Defense, 9 October 1986, DTIC Number AD A157 589.

[DoD Trusted Computer Report 1983] "Trusted Computer System Evaluation Criteria,"
CSC-STD-001-83, U.S. Department of Defense Computer Security Center,
15 August 1983, DTIC Number AD A207 905.

[Donaldson 1988] C. Donaldson and P.B. Dyson, "Computer-Aided Systems and Software
Engineering Products for Time-Critical Applications Development," Software Productiv-
ity Solutions (SPS), Inc., April 1988.

[E&V Plan] [@E&V Report 1984: E&V Plan A]. [@E&V Report 1987: E&V Plan A].

[E&V Reference Manual] [@RM].

[E&V Report 1984] Evaluation and Validation (E&V) Team Public Report, Volume I, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, 30 November 1984,
DTIC Number AD A153 609.

(E&V Report 1985] "Evaluation and Validation (E&V) Team Public Report," Volume II, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, November 1985, DTIC
Number AD A172 343.

[E&V Report 1987] "Evaluation and Validation (E&V) Team Public Report," Volume Ill, Air
Force Wright Aeronautical Laboratories, Wright-Patterson AFB, September 1987, DTIC
Number AD A196 164.

[E&V Requirements 1984] (@E&V Report 1984: E&V Requirements B.].

[E&V Requirements 1987] [@E&V Report 1987: E&V Requirements D].

[E&V Schema 1987] "E&V Classification Schema Report," TASC, TR-5234-2, Version 1.0,
15 June 1987.

(E&V Tools and Aids 1987] [@E&V Report 1987: Tools and Aids C].

A-2

I
E&V Guidebook, Version 2.0

I (Firth 1987] R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, "A Guide to the Classifi-
cation and Assessment of Software Engineering Tools," Software Engineering Institute,5 Technical Report, CMU/SEI-87-TR-10, August 1987, DTIC Number AD A182 895.

[Gray 1987] L. Gray, "Using the SEI's Methodology for Evaluating Ada Environments: A
Comparison of VAX/VMS to Rational," Proceedings of the AIAA Computers in Aero-
space VI Conference, 7-9 October 1987.

(Grund 1985] E.C. Grund, L.A. Hilliard, and K.A. Younger, "Key Characteristics of Ada
Programming Support Environments," MITRE Corporation, ESD-TR-85-144, 9590,
July 1985, DTIC Number AD B096 137.

[Henderson 1987] P.B. Henderson and D. Notkin, "Integrated Design and Programming En-
vironment," Compluter, IEEE, November 1987.

[Hogan 1985] M.O. Hogan and S.M. Prud'homme, "Definition of a Production Quality Com-
piler," Aerospace Corporation, Technical Report, July 1985, DTIC Number AD A182
445.

I [Houghton 1983] R.C. Houghton, Jr., "A Taxonomy of Tool Features for the Ada Program-
ming Support Environment (APSE)," U.S. Department of Commerce, National Bureau
of Standards, NBSIR-81-2625, December 1982, Issued February 1983.

I [Houghton 1987] R.C. Houghton, Jr. and D.R. Wallace, "Characteristics and Functions of
Software Engineering Environments: An Overview," ACM Software Engineering Notes,
Vol. 12, No. 1, January 1987.

(Howden 1982] W.E. Howden, "Contemporary Software Development Environments,"
Communications of the ACM 25(5), pp. 318-329, 1982.

I [IDA 1985] A.A. Hook, G.A. Riccardi, M. Vilot, and S. Welke, "User's Manual for the Proto-
type Ada Compiler Evaluation Capability (ACEC)," Version 1, Institute for Defense
Analysis, IDA Paper P-1879, October 1985, DTIC Number AD A163 272.

[ISTAR 1987] Workshop on Future Development Environments, Information Science
and Technology Assessment for Research, Conference on Information Mission
Area (IMA) Productivity, Department of Army Director of Information Systems for
Command, Control, Communications and Computers, 13-15 April 1987, pp 28.

[Jackson 1985] A.R. Jackson, "Abstract Data Types and the IPSE Database,"
[@McDermid 1985], pp. 135-145, 1985.

[Kean 1985] E.S. Kean and F.S. Lamonica, "A Taxonomy Of Tool Features For A Life Cy-
cle Software Engineering Environment," Rome Air Development Center, Griffiss AFB,
June 1985, DTIC Number AD B096 355.

[Lawlis 1989] P.K. Lawlis, "Supporting Selection Decisions Based on the Technical Evalua-
tion of Ada Environments and Their Components," PhD. dissertation, Arizona State
University, August 1989.

I
* A-3

E&V Guidebook, Version 2.0 U

[Lehman 19811 M.M. Lehman, "The Environment of Program Development, Maintenance 3
Programming, and Program Support," [@Wasserman 1981], pp. 3-14, 1981.

(Long 1988] F.W. Long, and M.D. Todd, "Evaluating Tool Support Interfaces,"
Ada in Industry, Proceedings of the Ada-Europe Conference, Munich, 7-9 June 1988,
Cambridge University Press, 1988.

[Lyons 1986] "Selecting an Ada Environment," eds. T.G.L. Lyons and J.C.D. Nissen,
Ada-Europe Working Group, Cambridge University Press, 1986.

[Martin 1986] D. Martin, "Advanced Database Techniques," MIT Press, 1986. 3
[McDermid 1984] J. McDermid and K. Ripken, "Life Cycle Support in the Ada Environ-

ment," Cambridge University Press, 1984. 3
(METHODMAN] [@DoD 1982].

(Mich 1986] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N. Mudge, and T. Schultze, "Toward
Real-Time Performance Benchmarks for Ada," Electrical Engineering and Computer I
Science Dept., Univ. of Michigan, RSD-TR-6-86, January 1986, pp. 1-25.

[MIL 1989] "Common APSE Interface Set, Revision A," MIL-STD-1838A, U.S. Department i
of Defense, April 1989, DTIC Number AD A157 589.

[MITRE BGT 1986] S.R. Rainer and T.P. Reagan, "User's Manual for the Ada Compilation 3
Benchmark Generator Tool," MITRE Corp. MTR-87W00192-01, January 1988.

[Morton 1985] R.P. Morton and J.C. Wileden, "Information Interface Related Sources,"
Institute for Defense Analyses, SEE-INFO-003-001.0, IDA Paper p-1821, April 1985
(Appendix 2, L. Stucki, "Some Thoughts on a Taxonomy for Software Engineering
Objects"), DTIC Number AD A185 664. I

[NBS Taxonomy] [@Houghton 1983].

[Nissen 1984] J.C.D. Nissen, B.A. Wichman, et al.,"Guidelines for Ada Compiler Specifica-
tion and Selection," in Ada: Language, Compilers And Bibliography, ed. I
M.W. Rogers, Cambridge University Press, 1984.

[Notkin 1981] D.S. Notkin and A.N. Habermann, "Software Development Environment Is- 3
sues as Related to Ada," [@Wasserman 1981], pp. 107-133, 1981.

[Oberndorf 1988] P.A. Oberndorf, "The Common Ada Programming Support Environment
(APSE) Interface Set (CAIS)," IEEE Transactions on Software Engineering, Vol. 14, I
No. 6, June 1988.

[Peterson 1985] J.L. Peterson and A. Silberschatz, "Operating System Concepts," 2nd edi- I
tion, Addision-Wesley, 1985.

[RADC 1985] T.P. Bowen, G.B. Wigle, and J.T. Tsai, "Specification of Software Quality At- 3
tributes Software Quality Evaluation Guidebook," Rome Air Development Center,

A-4

E&V Guidebook, Version 2.0

Griffiss AFB, RADC-TR-85-37, Volume III (of three), February 1985, DTIC Number AD
A153 990.

[RM] "Evaluation and Validation (E&V) Reference Manual," Version 2.0, Wright Research
and Development Cent ;r, WRCC TR-89-?, Wright Patterson AFB, September i989,
DTIC Number pending.

[SEE Taxonomy] [@Kean 1985].

[STARS-SEE 1985] "Proposed Version 001.0," STARS Joint Service Team for Software En-
gineering Environments, Stars Joint Program Office, October 1985.

[Stenning 1981] V. Stenning, T. Froggart, R. Gilbert, and E. Thomas, "The Ada Environ-
ment: A Perspective," [@Wasserman 1981], pp. 36-46, 1981.

[STONEMAN] [@DoD 1980].

[Stuebing 1988] H.G. Stuebing, "Evaluation of Computer Aided Systems/Software Engineer-
ing Products for Time-Critical Naval Systems," Proceedings of the Conference Meth-
odologies and Tools for Real Time Systems, November 14-15, 1988.

[Texas Instruments 1985] The APSE Interactive Monitor, Texas Instruments, Slide Presenta-
tion to the E&V Team, 5 September 1985.

[UK AES 1986] R.H. Pierce, I. Marshall, and SD. Blude, "An Introduction to the MoD Ada
Evaluation System," Software Sciences Ltd., Report Number 5485, June 1986.

(Wasserman 1981] A.I. Wasserman, Tutorial: Software Engineering Environments,
IEEE, 1981.

[Weiderman 1987] N. Weiderman and N. Haberman, "Evaluation of Ada Environments,"
Software Engineering Institute, Technical Report CMU/SEI-87-TR-1, March 1987, DTIC
Number AD A180 905.

[Weiderman 1987b] N.H. Weiderman, et al., "Ada for Embedded Systems: Issues and
Questions," Software Engineering Institute, Technical Report CMU/SEI-87-TR-26, De-
cember 1987, DTIC Number AD A191 096.

[Weiderman 1989] N.H. Weiderman, "Ada Adoption Handbook: Compiler Evaluation and
Selection, Version 1.0," Software Engineering Institute, Technical Report CMU/
SEI-89-TR-13, March 1989, DTIC Number AD A207 717.

[WIS CEC 1985] G. Gicca and C. Stacey, "Component Evaluation Criteria," GTE Govern-
ment Systems, Technical Report, 16 August 1985.

[WIS CEG 1985] "WIS Compiler Evaluation Guidelines;" GTE Labs, Technical Report,
1985.

A-5

E&V Guidebook, Version 2.0

U
3 APPENDIX B

ACRONYMS AND ABBREVIATIONSI
ACEC Ada Compiler Evaluation Capability3 ACM Association for Computing Machinery
ACVC Ada Compiler Validation Capability
AES Ada Evaluation System
AFB Air Force Base
AFWAL Air Force Wright Aeronautical Laboratories
AlE Ada Integrated Environment
AJPO Ada Joint Program Office
ALS Ada Language System
ALS/N Ada Language System/Navy

ANNA Annotation Language for Ada
ANSI American National Standards Institute
APSE Ada Programming Support Environment
ARTEWG Ada RunTime Environment Working Group (SIGAda)
ASCII American Standard Code for Information Interchange
ATF Advanced Tactical Fighter
AVF Ada Validation Facility
AVO Ada Validatior "-rganization
BGT Benchmark (jnerator Tool
BSI British Standards Institute (UK)
CAIS Common APSE Interface Set
CIVC CAIS Implementation Validation Capability
CLI Command Language Instruction
CMU Carnegie Mellon University
CORE Controlled Requirements Expression
CPU Central Processing Unit
CSC Computer Software Component
DACS Data and Analysis Center for Software
DoD Department of Defense
DTIC Defense Technical Information Center
EBCDIC Extended Binary Coded Decimal Interchange Code
ESD Electronic Systems Division (Air Force)
E&V Evaluation and Validation
GB Guidebook
GIT Georgia Institute of Technology
GKS Graphical Kernel System
IBM International Business Machines Corporation
IDA Institute for Defense Analysis

i B-1

E&V Guidebook, Version 2.0

IEEE Institute of Electrical and Electronics Engineers, Inc.
IMA Information Mission Area
IPSE Integrated Project Support Environment
ISTAR Information Science and Technology Assessment for Research
I/O Input/Output
JIAWG Joint Integrated Avionics Working Group
KAPSE Kernel Ada Programming Support Environment
KIT KAPSE Interface Team
KITIA KAPSE Interface Team for Industry and Academia
LHX Light Helicopter Experimental
LRM Language Reference Manual [@DoD 1983]
MAPSE Minimal Ada Programming Support Environment
MCCS Mission-Critical Computer System
MIT Massachusetts Institute of Technology
MMI Man-Machine Interface
MoD Ministry of Defense (UK)
NADC Naval Air Development Center
NBS National Bureau of Standards
NTIS National Technical Information Service
OCD Operational Concept Document
OS Operating System
PCTE Portable Common Tool Environment
PDL Program Design Language
PIWG Performance Issues Working Group (SIGAda)
RAM Ramdom Access Memory
RM Reference Manual
SDI Strategic Defense Initiative
SEE Software Engineering Environment
SEI Software Engineering Institute
SIGAda Special Interest Group for Ada of the Association for Computing

Machinery (ACM)
SPS Software Productivity Solutions
SQL Structured Query Language
STARS Software Technology for Adaptable, Reliable Systems
TASC The Analytic Sciences Corporation
TOR Technical Operating Report
UK United Kingdom
VAX Virtual Address Extension
VMS Virtual Memory System
VSR Validation Summary Report
V&V Verification and Validation
WIS WWMCCS Information System
WRDC Wright Research and Development Center, formerly AFWAL
WWMCCS WorldWide Military Command and Control System

B-2

E&V Guidebook, Version 2.0

* APPENDIX C
FORMAL GRAMMAR

This appendix specifies zections of the Reference Manual and Guidebook
(Reference System) as a formal grammar. The sections include chapters four through

3 seven of the Reference Manual (RM), chapters four through 99 of the Guidebook (GB),

all explicit references, the tables of contents, the indices, and the citations. The specifica-
3 tion is presented as a partitioned grammar for convenience.

(The grammar is presented in a modified Backus-Naur form. Brackets repre-

sent optionality when alone, and may be marked by an asterisk "*" to denote 0-N in-
stances of the production, or by a sharp "#" to denote 1-N instances. Angle brackets

3 denote comments in place of productions which are too elaborate to express here. All

terminals of the grammar are expressed as quoted literals, or composite literals based on
3 characters and character strings.)

C.1 FORMAL REFERENCES

Throughout the Reference System, whenever formal references are made, a
single consistent set of grammar rules are used. This includes reference from one vol-

ume to the other, reference from one section in a volume to another section in the same
I document, and reference to documents outside the Reference System.

3 reference-list " [" references [";" references]* "]"

references reference ["," reference]*

reference "@" phrase [":" [phrase]
designator list]]3 [phrase] designator list

phrase-list phrase [" phrase I*

C-1

E&V Guidebook, Version 2.0

phrase ::= <text lacking special characters>

designator-list ":= designator ("," designator]

designator := [IleJ "."] lead ["." digits]"

lead ::= [digits] caps

digits := one to nine [zeroto nine]

onetonine :-- ("1"-"9")

zerotonine

caps ":=

0.2 FORMAL CHAPTERS

The formal chapters of the Reference System are defined here.

C.2.1 Chapter Components

The following rules define the components which are used to compose formal

chapter entries.

header designator phrase

prolog ::= header purpose primary [host]
[vendors_agents]

purpose "'.- "Purpose:" text

host :: "Host/OS:" text

primary ::= "Primary References:" referencelist

vendors-agents::= "Vendors/Agents:" reference-list

method meth description inputs
process outputs

C-2

U
E&V Guidebook, Version 2.0

U meth_description ::= "Method:" text

inputs ::= "Inputs:" text

pi ocess ":= "Process:" text

* outputs := "Outputs:" text

citations "'- "Citations:" (citations]#

synopsistext ::= "Synopsis:" text

methods ::= "Methods:" reference-list

3 text ::= < prose text >

3 0.2.2 Chapter Entries

Each numbered section of the formal chapters follows a specific grammar rule.
I The following rules define the format of each chapter entry.

synopsi ::= header citations synopsis-text [methods]

E&Vtechnology ::= prolog method

UC.2.3 Formal Chapter Ordering

3 The formal portion of the GB is found in Chapters 4 through 99.

3 formalchapters ::= [synopsis]*

E&V technology]U

[E&V.technology]"

I
I
* C-3

E&V Guidebook, Version 2.0

C.3 TABLE OF CONTENTS

The table of contents shares some features with the rest of the formal aspects

of the GB.

table of-contents [chapter]' index

chapter ::= designator phrase digits

C.4 CITATIONS

The citations are found in Appendix A, and have a formal structure as defined

in the following grammar. The (semantic) form of citation text is taken from the standard

for IEEE Software Magazine.

citations [citation]

citation key body "."

key "[" phraselist "]"

body [referencelist] phraselist

C-4

E&V Guidebook, Version 2.0

I
* APPENDIX D

VENDORS AND AGENTSU
(ARTEWGI

3 Mike Kamrad (612) 456-7315
Unisys Computer Systems Division

3 MS/Y41 A6

P.O. Box 64525
St. Paul, MN 55164-0525

[BSI, Milton-Keynes, UK] 0908-220908 x2313
J.B. Souter

BSI Quality Assurance
P.O. Box 375
Milton Keynes MK14 6LL

UK

I (Cambridge University Press]
Cambridge University Press

32 East 57th Street
New York, NY 10022

* (Defense Technical Information Center]
Defense Technical Information Center (703) 274-7633

3 Cameron Station
Alexandria, VA 22314

U (DACS]
Data & Analysis Center for Software (315) 336-0937

3 RADC/COED

Bldg 101
Griffiss AFB, NY 13441-5700
Attn: Document Ordering

I
* i -1

E&V Guidebook, Version 2.0

[E&V Team]

Mr. Raymond Szymanski (513) 255-2446

WRDC/AAAF -6730

Wright-Patterson AFB AV 785-2446

OH 45433-6543 -6730

Milnet: szymansk@ajpo.sei.cmu.edu

[GIT]

Georgia Institute of Technology (404) 894-3180

Software Engineering Research Center
Atlanta, GA 30332-0280

(MITRE]

MITRE Corporation (703) 883-6000

Civil Systems Division
7525 Colshire Drive

McLean, VA 22102-3481

[National Technical Informatibn berv=;e]

National Technical Information Service (703) 487-4650

U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161

[PIWG]

Dan M. Roy (301) 464-6800
Ford Aerospace
7401-D Forbes Blvd.

Seabrook, MD 20706

[RADC]

qome Air Development Center (COEE) (315) 330-4654

Griffiss AFB, NY 13441-5700

D-2

I
E&V Guidebook, Version 2.0

[SEll
Software Engineering Institute (412) 268-7700
Carnegie Mellon University
Pittsburgh, PA 15213

(SofTech, Inc.]
Teresa L. Banks (513) 429-3241

SotTech, Inc.
3100 Presidential Drive
Fairborn, OH 45324-2039

ARPAnet: hillm@wpafb-jalcf

[SPS]
Software Productivity Solutions, Inc. (407) 984-3370
P.O. Box 361697

Melbourne, FL 32936

(UMich]
Russel M. Clapp, Louis Duchesneau, Richard A. Volz, (313) 764-1817
Trevor N. Mudge, and Timothy Schultze
The Robotics Research Laboratory

The University of Michigan

Ann Arbor, MI 48109

D-3

